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Abstract We address the problem of progressively de-

ploying a set of robots to a formation defined as a

point cloud, in a decentralized manner. To achieve this,

we present an algorithm that transforms a given point

cloud into an acyclic directed graph. This graph is used

by the control law to allow a swarm of robots to pro-

gressively form the target shape based only on local

decisions. This means that free robots (i.e., not yet

part of the formation) find their location based on the

perceived location of the robots already in the forma-

tion. We prove that for a 2D shape it is sufficient for a

free robot to compute its distance from two robots in

the formation to achieve this objective. We validate our
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method using physics-based simulations and robotic ex-

periments, showing consistent convergence and minimal

formation placement error.
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1 Introduction

Multi-robot systems are becoming pervasive in society:

whether it is self-driving cars or swarms of quadcopters,

the idea of using large number of communicating robots

to accomplish tasks is becoming more common. Coor-

dinating large teams of robots can be accomplished in

many ways, for example with robot swarms using decen-

tralized techniques (Brambilla et al, 2013). In general,

most approaches assume that all of the robots involved

in a particular task, or executing a particular algorithm,

are readily available at the beginning of its execution. In

practice, however, this can be rather difficult to achieve

for swarms containing more than a dozen robots: eco-

nomic or technology constraints can severely limit the

number of robots that are available for deployment at a

given time. For instance, the current state-of-the-art in

terms of planetary exploration, i.e., the current effort

at understanding Mars, required hardware to be sent

in waves, and each new wave is built on the capability

of the previous. Currently, the rovers use the communi-

cation infrastructure provided by satellites of previous

missions.

We believe that future mission involving complex,

heterogeneous swarms will be deployed progressively,

in phases. A first phase of expensive, complex robots

can build or provide infrastructure that paves the way

for simpler, cheaper, and more mission-specific robots.

For these progressive deployments, we need a new class
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of algorithms that focuses on swarms that grow over

time (Beal, 2011). As a first attempt in this area, in

this paper we propose a decentralized algorithm that

can progressively form an arbitrary shape using a robot

swarm. Shape formation is an important and well-studied

application of robot swarms, with applications includ-

ing environmental modeling of large areas (such as the

optimal placement of sensors) or the creation and main-

tenance of mobile ad-hoc networks. We can envision

robots beginning their tasks before the structure is com-

pleted, and still providing a useful service. In this con-

text, the time needed to form a complete shape is bound

to the frequency at which robots can be added to the

system, which is possibly not completely controllable

by the system designer. The time needed to correctly

place the next robot and the accuracy of its placement

are then far more important metrics.

Centralized methods allow robots to achieve any

kind of shape. However, they might not be applicable in

communication-challenged scenarios, and as the num-

ber of robots involved increases, these methods become

less and less desirable. In addition, pre-assignment of

robots to specific positions is not robust to individual

failures and it becomes increasingly more cumbersome

as the swarm size grows. We believe that a progressive,

decentralized method such as the one presented in this

paper can solve these issues.

Our main idea is to represent the target shape as an

acyclic directed graph in which each robot can find its

position using two other robots (called parents) in the

shape as reference. We assume that all robots possess

the graph representation, but none is initially assigned

to a specific position. The overall shape is built dynam-

ically and iteratively: each new robot joins the shape

only after being granted permission by one of the par-

ents, using local communication exclusively. The result-

ing algorithm is completely decentralized and parallel:

multiple robots can join different parts of the shape at

any given time.

The rest of the paper is organized as follows. We dis-

cuss related work in Section 2. In Section 3, we present

an algorithm to construct an acyclic directed graph

starting from a point cloud which represents the target

shape. In Section 4, we illustrate a mathematical model

that proves the convergence properties of our decentral-

ized algorithm. In Section 5, we describe the behavior

the robots follow to achieve the target shape. We report

experimental evaluation in Sections 6 (simulation) and

7 (real robots). The paper is concluded by Section 8, in

which we outline future research directions.

2 Related Work

The deployment of a swarm of robots in patterns is

a foundation for various practical swarm applications,

and has been widely studied. Many of these studies fo-

cus on special patterns that are suited for specific appli-

cations. For instance, (Güzel et al, 2017) and Sepulchre

et al (2008) focus solely on circle formation and paral-

lel formation, while Majid and Arshad (2015) focus on

a ’V’ shaped pattern, and Paley et al (2008) manage

to stabilize symmetric formations. These kinds of pat-

terns are usually achieved through well-designed con-

trol laws, and have different communication or sensors

requirements. However, the focus is in general towards

relatively simple patterns, which constrain their appli-

cation domain.

In this paper, we focus on a pattern formation scheme

for arbitary patterns. To represent these patterns, sev-

eral schemes are proposed in literature: for instance,

Hsieh and Kumar (2006) and Zhang and Leonard (2006)

use curves described by a formula for 2D geometrical

patterns. Cheah et al (2009) propose a region-based

formation method shaping the target region from a

continuous mathematical representation of the frontier.

Robots are then deployed to cover this region. This is

achieved with a control law derived using the shape

of the region as a global objective for all robots, and

maintaing a minimum distance between neighbors as a

local objective function. Similarly, potential fields were

also proposed (Hsieh et al (2008)). Zhang et al (2007)

use smooth curve-based formation for ocean sampling

and, in later work, design a control algorithm to form a

pattern defined by a boundary curve without requiring

a global positioning system (Zhang and Haq (2008)).

Compared to our work, the existing methods either re-

quire robots to sense the position of all robots involved

in the formation (and not only the neighbors), or do

not support progressive formation. Cowley and Tay-

lor (2007) introduced an incremental pattern forma-

tion that allows the construction of symmetrical and

recurring shapes that can be described by particularly

crafted functions. The work was not validated on real

robots or in presence of noise, and it is limited in terms

of the type of shapes that it can form. We show that our

approach works with noise, and for formations defined

by arbitrary point clouds.

Another way to represent the desired pattern is to

use a point cloud to define the relative positions of each

robot. Robots are then directed to the desired positions

following a control law. The process of assigning each

robot to a specified point is similar to a task alloca-

tion problem, as the control law to drive the robots to

their destination is related to path planning. In fact,
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Belta and Kumar (2002) focus on moving a swarm of

robots while keeping it in formation, and Michael et al

(2008b) propose a task allocation method that can be

used in pattern formation. More recently, the work of

Turpin et al (2013) considers the problem of assigning a

swarm of robots to specific goals, and gives a trajectory

planning method. Similar work is done by Turpin et al

(2012b), in which the robots are required to move while

keeping a desired shape, and each robot plans its own

trajectory based on relative location information. While

all of these methods have interesting applications, their

experimentation is limited to simple shapes, and they

do not address the problem of progressive deployment.

Closer to our approach, Desai et al (2001) uses graph

theory to assign robot positions in a given formation.

Robots in the formation determine their neighbors’ rel-

ative position based only on distance or using both

distance and bearing. Scalability of such methods was

proven by Rubenstein and Shen (2008), in which they

show control of a large number of robots in formation.

This method also provides a mechanism to change the

formation and to self-heal if a robot fails. The method

is further implemented at large scales using physical

robots in Rubenstein et al (2014): the swarm is ini-

tialized with static seed robots and then generates a

coordinate frame to identify the location of each swarm

member, and robots are then driven purely by virtual

potentials. In comparison, our work does not need seed

robots, and it can be progressively deployed.

The leader-follower method is also popular to man-

age swarm behaviors, where one or more robots are

treated as a reference for the others (Tanner et al (2002)).

For example, Fierro et al (2001a) focus on controlling

a swarm of Unmanned Aerial Vehicles (UAVs) using a

leader-follower structure; in their work, the trajectory is

planned for the leader, and the followers only maintain

their relative position. Fierro et al (2001b) also present

a leader-follower structure, with robots switching be-

tween continuous-state different control laws to achieve

the desired pattern.

Turpin et al (2012a) represent the desired pattern

with shape vectors, and Anand et al (2014) generate a

pattern to move objects, where a master robot directs

all other robot slaves. Michael et al (2007) and Michael

et al (2008a) use an aerial robot to control a team of

ground robot to move as a pattern: by using a rough

model of the formation, the aerial robot can control the

formation without knowing details about each robot in

the formation.

Compared to these works, our method also uses a

leader-follower hierarchy based on a graph. Each robot

needs to confirm its destination according to the po-

sitions of its predecessors in the graph. However, the

allocation of robots on the graph is not predefined, and

a robot joining the formation dynamically finds a suit-

able predecessor, thus providing flexibility and fault tol-

erance.

Virtual forces or virtual potentials are widely used

in pattern formation. Zhang (2007) and Yang and Zhang

(2010) present an approach based on Jacobi shape the-

ory for robot swarms, reaching a formation with a set

of virtual forces. Chen and Chu (2013) use a model

based on attractive and repulsive interaction between

robots. Methods presented in these works are similar to

the Joining phase of our method, which in contrast is a

whole deployment process consisting of multiple phases,

and includes a strategy for robots to find proper prede-

cessors. Besides, as the theoretical basis of these works

are different, so are the virtual forces.

Additionally to the previously mentioned work, a

handful of publications are addressing a similar ques-

tion as our solution: achieving any given shape defined

as a point cloud in a decentralized manner. Spletzer

and Fierro (2005) reorganize a swarm of robots to form

new shapes while minimizing the maximum distance

any robot travels, or the total distance traveled by the

group. Ravichandran et al (2007) provide a scalable

distributed algorithm to achieve an arbitrary forma-

tion based on a distributed median consensus estima-

tor, requiring only local communication. Yu and Nagpal

(2008) focus on the theoretical study of decentralized

control for sensing-based formation on modular multi-

robot systems. Yu and Nagpal (2008) use local sensor

constraints between neighboring robot agents to define

the desired shape. Alonso-Mora et al (2011) provide a

method to form arbitrary target patterns independently

from the number of robots. Liu and Shell (2014) tackle

the problem of changing smoothly between formations

of spatially deployed multi-robot systems. The main dif-

ference between our approach and these methods is that

we propose an incremental formation scheme, where

new robots join the pattern without disrupting the par-

tially formed structure.

3 Progressive Formation

This paper can be considered a case study in progressive

swarm deployment: robots are progressively introduced

in an environment and are required to form a complex

shape, without the knowledge of all robot positions. In

this context, the swarm members cannot share a global

coordinate system, but they have access to a local coor-

dinate system defined by their own frame of reference.

Interaction among robots is achieved through situated

communication, i.e., a robot can get the relative range
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Fig. 1 Steps of the progressive formation approach proposed
in this paper: (a) the desired formation depicted as a 2D point
cloud, (b) the acyclic directed graph generated with algorithm
A1, (c) from the behavior law A2, robots reach their final
formation. In (b), numerical labels indicates the nodes in the
graph, with the arrows identifying the parents of a node and
their associated number representing the distances between
robots. The markers’ shape indicate the side a node is w.r.t.
the vector between its parents (using the right-hand rule):
squares are on the positive side, while diamonds are on the
negative side.

and bearing (RAB) of the sender when it receives a

message (Støy, 2001).

We propose a progressive formation approach. As

shown in Fig. 1, this method consists of two stages:

1. We generate a directed acyclic graph (DAG) from a

point cloud representing robot positions. This graph

specifies a parent-child relationship between triads

of positions (two parents, one child). As soon as a

robot can identify both its parents, it can join the

formation;

2. We propose a set of behavior laws to direct a robot

to the target position based on the information sent

from its parents, until it reaches its target position

in the formation.

A robot is guided to its target position by robots

that have already joined the formation. These robots

are called parents of the robot. With the exception of

the first two deployed robots (robots 0 and 1), our solu-

tion requires that each robot is able to sense 2 parents.

We chose 2 parents, instead of another number, as a

compromise between the communication requirements

and the robustness of the method. With only 1 parent,

robots need to exchange their relative positions to es-

tablish a common frame of reference. Using 2 parents

does not require this exchange, lowering the commu-

nication requirements. When considering more than 2

parents, it is worth noting that a robot is unable to join

the pattern until all of its parents reached their posi-

tion (which would slow down the formation process),

and the robot must be able to sense all of them (which

gets harder as the number of parents increases).

Fig. 2 Task flow of our graph generation from a point cloud
algorithm

3.1 Directed Acyclic Graph Generation

We propose an algorithm to produce a DAG from a 2D

point cloud, based on the flow graph shown in Fig. 2.

Since individual robots must converge to a desired posi-

tion in a global reference, the graph encodes two types

of information:

1. The relative distance between a robot and its par-

ents; and

2. The orientation of the robot with respect to the vec-

tor connecting its two parents.

To compute the graph, we use three lists over which

we iterate until all points are labeled:

1. Unlabeled list: points that not have been assigned

a label yet;

2. Labeled list: points with a label from the graph;

3. Delayed list: points that could not be labeled in

the current iteration.

The algorithm starts by labeling point 0. This is

the initial point for the formation process and it can be

chosen based on different criteria such as distance, hi-

erarchy, etc. In this implementation, we elect the near-

est point to the center of the point cloud, so that the

formation will expand from the inside out, gradually.

Subsequently, all other points are sorted according to

their distance to the center. The closest point to point



Decentralized Progressive Shape Formation with Robot Swarms 5

0 is labeled 1, and both are pushed in the Labeled list.

Point 0 has no parents, while point 1 has one.

All the other points are pushed in the Unlabeled

list and will be labeled through an iterative process

to find their two parents. At each iteration, a candi-

date is pulled from the Unlabeled list assuming that all

points in the Labeled list could be its parent. To se-

lect a pair of parents, we test pairs of points in Labeled

as potential parents according to the distances to the

candidate. The pairs of potential parents nearest to the

candidate are tested first, and the first two points that

pass the test are chosen as the parents. Assuming that

no distance between two adjacent points in the graph is

greater than the robot communication range, the robots

are always able to communicate with their parents.

Pairs of points from the Labeled must pass two tests:

(1) they form a triangle with the current candidate,

and (2) no other points is present at the edges of this

triangle. If this is the case, the candidate is moved from

the Unlabeled list to the Labeled list, getting a label

according to its position in the Labeled list. If the search

fails to find a pair of parents, the point is transferred

the Delayed list. When all points of the Unlabeled list

are checked, the remaining points in the Delayed list are

pushed back to the Unlabeled list and another iteration

begins.

The algorithm ends after checking the Delayed list.

If this list is empty, all points have been labeled; other-

wise, the algorithm fails. Our 2-parent representation

might not be able to represent every possible point

cloud, such as cases in which too many points are placed

along a single line. In practical applications, if accept-

able, the point cloud could be modified to introduce

slight perturbations that break the linearity of the shape.

Once a point is moved to the Labeled list, an ele-

ment is added to the graph, which is recorded in a table

to be later distributed to the swarm. Each element of

this table contains six items: the label, parent 1, par-

ent 2, distance to parent 1, distance to parent 2, and

the side of the position with respect to the two parents.

For instance, Tab. 1 depicts the graph of Fig. 1 with

nine points. The point with label 0 in the graph has no

parents, and point labeled 1 has only one. The value

-1 is used to indicate an unused cell in the table. The

main drawback of the current method is that, as the

point labeled 1 has only one parent, the corresponding

robot can end up anywhere on a circle around the robot

labeled 0. As the rest of the formation is built around

these two robots, the orientation of the formation is not

fixed. This problem can be easily resolved by recording

both the relative distance and orientation of the point

labeled 1 w.r.t. the point labeled 0 (Li et al, 2017).

Table 1 The acyclic directed graph in Fig. 1(b), recorded as
a table

Label P1 Dis1 P2 Dis2 Side

0 -1 -1 -1 -1 1
1 0 25 -1 -1 1
2 0 25 1 35 0
3 0 25 1 35 1
4 0 25 2 35 0
5 1 25 2 25 1
6 1 25 3 25 0
7 2 25 4 25 1
8 3 25 4 25 0

4 Mathematical Model

We build a mathematical model to derive the control

law that drives the robots to their positions on the

graph. This model is used to guarantee that the desired

formation can be reached.

4.1 Formulation

Consider a team of N robots labeled as i ∈ {0, ..., N − 1}
moving in R2 space. With respect to a fixed global ref-

erence frame Øg
xy, the position of each robot can be

represented by a vector pi(t) = [xi(t), yi(t)]
T ∈ R2. We

assume that the dynamics of each robot is:

ṗi = ui (1),

From the conditions described in Section 3, each

robot i does not know its absolute position pi(t). Situ-

ated communication (Støy, 2001) provides the relative

distance dij(t) = ‖pi(t)− pj(t)‖ and the relative bear-

ing θij(t) of the j neighbor robots in direct line-of-sight.

Commercial robots such as the e-puck (Mondada et al,

2006) can be equipped with devices that perform situ-

ated communication. Based on the prerequisites of the

earlier sections, the problem is defined as follows.

Problem 1. Given a desired formation expressed

as a set of positions {q̄0, q̄1, ..., q̄N}, determine a trans-

lation r ∈ R2 and a rotation R(θ) such that

lim
t→∞

R(θ)pi(t) + r = q̄i

It is preferable to create a target shape that can

arbitrarily rotate and translate with respect to a fixed

global reference, rather than forcing all robots to con-

verge to specific positions. For the sake of simplicity,

we consider q̄0 = [0, 0]T and q̄1 = [x1, 0]T with x1 > 0,

without loss of generality, in the rest of this section. Un-

der this assumption, p01
i is treated as the coordinates

of the i -th robot in the reference frame centered in p0.

The x axis of the reference is oriented with the vector
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connecting p0 to p1, while the y axis with a π/2 anti-

clockwise rotation of x around p0. Problem 1 can then

be expressed in new terms as:

Problem 2. Given a desired formation {q̄0, q̄1, ..., q̄n}
where q̄0 = [0, 0]T and q̄1 = [x1, 0]T and x1 > 0, ensure

that ṗi → 0 and pi → q̄i ∀i ∈ {0, 1, ..., N − 1}.

4.2 Proposed Solution

For the first robot, at the center of the formation, a

simple solution to Problem 2 is to maintain its current

position, i.e.,

u0 = 0 (2)

For the second robot to join the formation, an equally

simple solution is to apply any control law of the form

u1 = f1(d0,1(t)) (3)

that ensures that d0,1(t) asymptotically tends to ||q̄0(t)−
q̄1(t)||. Here we use the Coulomb potential (Spears et al,

2004), a distance-based attraction/repulsion law, to de-

rive f1.

The control law for the other robots (i > 1) is

based on a continuously differentiable potential field

Φi(pi,pj ,pk), Φi : R2 × R2 × R2 → R, which can be

considered as being generated by the two parent nodes j

and k such that, for any two bounded pj and pk, these

assumptions hold:

A1: Φi(pi,pj ,pk) is invariant to rototranslations:

Φi(R(θ)pi + r, R(θ)pj + r, R(θ)pk + r) = Φi(pi,pj ,pk)

A2: Φi(pi,pj ,pk) is unbounded for unbounded pi:

lim
‖pi‖→∞

Φi(pi,pj ,pk) =∞

A3: If pj and pk are distinct, Φi(pi,pj ,pk) admits

only one stationary point, which we denote as p̄i(pj ,pk),

and that point is a minimum of the potential field. This

corresponds to forcing robot i to only have one possible

position to reach when communicating with robots j

and k.

A4: Two finite scalars αmax and βmin exist such

that for any pj , pk

−∇Φi(pi,pj ,pk)T∇Φi(pi,pj + dj ,pk + dk) ≤ 0

for any ‖dj‖, ‖dk‖ ≤ αmax, and for any pi = p̄i(pj ,

pk) with ‖di‖ ≥ βmin.

This means that, for bounded perturbations of the

parents pj and pk, if pi is sufficiently far from the equi-

librium, the perturbed anti-gradient is still a direction

of descent of the non-perturbed potential field.

We prove the following theorem by using a control

law in the form:

ui = −∇Φi(pi,pj ,pk) (4)

Theorem 1. Consider the system described by Equa-

tion (1) and controlled by Equations (2)−(4) that com-

ply with assumptions A1−A4. Under the constraints:

1. If j and k are parents of i, then j < i and k < i;

2. p̄i(q̄j , q̄k) = q̄i ∀i ∈ {0, 1, ..., N};

Problem 2 is then solved for any set of initial con-

ditions.

Proof. Due to Equation (2), at t = 0, robot 0 is al-

ready stationary in its final position. Concerning robot

1, due to Equation (3), p1(t) converges asymptotically

to q̄1. As for the other robots (i > 1), by using Equation

(4), we can write

ṗi = −∇Φi(pi,pj ,pk).

For fixed and non-coincident pj and pk, global asymp-

totic stability of the point of equilibrium p̄i(pj ,pk) di-

rectly follows using

V = Φi(pi,pj ,pk) + Φi(p̄i(pj ,pk),pj ,pk)

as a Lyapunov function along with assumptions A2 and

A3. For robot 2, it is then possible to write

ṗ0,1
2 = −∇Φi(p

0,1
2 , q̄0, q̄1 + δ2(t)) (5)

for which q̄1 is Globally Asymptotically Stable (GAS)

for δ2(t) = 0. The term δ2(t) can be seen as a vanishing

output of the system
ṗ0,1
0 = 0

ṗ0,1
1 = f1(q̄0, ṗ

0,1
1 )

δ2(t) = ṗ0,1
1 − q̇1.

(6)

Equations (5) and (6) can be seen as the cascade of

two GAS systems which, according to Theorem 1.1 in

(Seibert and Suarez, 1990), is GAS if the trajectories

of the resulting system are bounded. Since Equation

(5) satisfies A4, the trajectories of the resulting sys-

tems are bounded (see also Theorem 1.2 in Seibert

and Suarez, 1990). By repeating the same procedure

for i ∈ {3, ..., N − 1} the theorem is proved. �
Since every position q̄i in the target shape is ex-

pressed with respect to two other positions q̄j and q̄k,

and j < i and k < i, the target shape can be pre-

sented as a directed acyclic graph in which every node

i is connected to its parents j and k. Thus, the pro-

cess of positioning a specific robot i can ideally be seen

as a cascade of positioning processes, which starts with

robot 1 and proceeds with all other robots. If every step

of the positioning dynamics is globally asymptotically
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stable, then the entire process converges to the desired

shape. This is the core idea of this proof.

For some applications, assumptions A3 and A4 might

prove to be too strong. For instance, the existence of a

single stationary point topologically forbids the use of

repulsion terms among robots that are usually used for

collision avoidance. To fix this, consider the following

relaxed condition:

A3bis: If pj and pk are distinct, p̄i(pj ,pk) exists,

which is an isolated minimum of Φi(pi,pj ,pk).

By using A3bis instead of A3 and dropping as-

sumption A4, the formation is asymptotically stable.

This means that a basin of attraction around the config-

uration of equilibrium ṗ0,1
i = q̄i exists for which Prob-

lem 2 is solved.

Theorem 2. Consider the system described by Equa-

tion (1) and controlled by Equations (2)−(4) that com-

ply with assumptions A1, A2, and A3bis. Under the

constraints:

1. If j and k are parents of i, then j < i and k < i;

2. p̄i(q̄j , q̄k) = q̄i ∀i ∈ {0, 1, ..., N − 1};

Problem 2 is solved for any set of initial conditions in a

suitable neighborhood of the equilibrium configuration

of ṗ0,1
i = qi ∀i ∈ {0, 1, ..., N − 1}.
Proof. Similarly to the proof of Theorem 1, the

overall system can be seen as a cascade of N systems

such that, in the absence of interconnection, ṗ0,1
i =

qi are asymptotically stable. This implies (see Theo-

rem 4.1 in Seibert and Suarez, 1990) that ṗ0,1
i = qi

is asymptotically stable for the cascaded system. The

theorem statement follows by definition of asymptotic

stability. �
The above proof demonstrates that the controller

will converge to the desired shape as far as all robots

received their destination and identified the proper par-

ents. Section 5 introduces a finite state machine that

assigns each robot a proper destination and proper par-

ents. Then the described control law is applied to drive

robots to the destination, allowing the whole swarm to

form the desired pattern in an incremental way. The

convergence for the overall behavior is shown in exper-

iments in Section 6 and 7.

5 Behavior

We assume that all robots involved in the formation

are aware of the formation graph, as described in Sec-

tion 3. This can be achieved by downloading the table

representing the graph before the robots’ deployment,

or through run-time broadcast. However, the robots

are not pre-assigned to a specified label in the graph.

The behavior allows them to find proper labels through

simple local interactions with other robots, including

robots already part of the formation and robots not

yet in the formation. This process can drive free robots

to participate in the formation gradually or, from the

perspective of the formation, it attracts free robots to

join from the edges of the current formation, allowing it

to grow dynamically. Of course, the assumption that all

robots are aware of the graph can be considered a limit-

ing constraint. However, the graph can be broadcasted

by robots already in the formation, so that nearby free

robots receive the graph and then participate to the

formation progressively.

As mentioned in Section 3, the formation process

starts when a robot gets the label 0 in the graph, and

is considered as part of the formation. In the context

of progressive deployment, this robot is simply the first

robot to enter the scene. If multiple robots are deployed

simultaneously, position 0 can be determined using one

of the many election schemes available in the literature

(e.g. Dieudonné and Petit (2007); Petit (2009); Karpov

and Karpova (2015)), or we can assign label 0 to a spe-

cially chosen robot. For example, robot 0 could be a

stakeholder that allows a user to monitor and control

the swarm, or it could be the first robot to reach the des-

ignated position for the center of the graph. Robot 0, as

explained earlier, does not move, but all other robots

gradually position themselves around it. Robot 0 can

also act as the interface with a human to interact with

the swarm and manually control the formation process

or change its shape. It is worth noting that this does

not prevent the whole formation process to be entirely

distributed, as there is no central control node.

5.1 Behavior structure

The behavior is represented as a finite state machine,

shown in Fig. 3. It consists of four states, which are

Free, Asking, Joining and Joined. Tab. 2 shows the state

transition conditions. A robot in state Free and Ask-

ing is still not part of the formation: it circles around

the edge of the formation, namely the structure com-

posed of Joining and Joined robots, and searches for a

proper label in the graph. When such a label is found,

and both its parents are in sight, the Free robot tran-

sitions to state Asking, sending a message to request

the label. Once the request is approved by the Joining

and Joined robots, the robot transitions to state Join-

ing. From then on it becomes part of the formation and

at the position designated by the acquired label. Based

on the control law described in Section 4, the robot is

attracted and repelled by its parents, moving to the

target position in the formation and stopping there. If

no obstacles are encountered and if the parents stay in
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FREE ASKING

JOININGJOINED

ESCAPE

(1)

(2)

(4) (3)

(5)

(7)

(6)

Fig. 3 The behavior represented as a finite state machine.
Every robot joining the formation will experience states Free,
Asking, Joining and Joined and finally Joined. The secondary
state Escape is active when a free robot is trapped among
Joined robots.

Table 2 State transition condition in Fig. 3

Marker Description

(1) Found a label
(2) Request refused
(3) Request granted
(4) Lost parents
(5) Reached target
(6) Trapped inside joined robots
(7) Escape from joined robots

sight, the robot finally converges to the desired position

and switches to state Joined. In the Asking state, sev-

eral robots may ask for the same label simultaneously.

In this case, only one is conferred the label, while the

rest transitions back to state Free. If a Joining robot

loses communication with its parents, it transitions to

state Asking to request the label again, from which it

may receive the same label or have to transition back to

state Free. It is possible that a Free robot gets trapped

among joined robots. In this case, the robot switches to

a secondary state, Escape, to evade its trapped location

and find a safe spot outside the formation. The whole

formation process is shown in Fig. 4.

5.2 States

Each of the states described in Fig. 3 are detailed in

this section, together with the communication scheme

and control law.

A
F

E

4

2 0 3

1

F

6

Fig. 4 The overall formation process. Round markers are
robots not participating to the formation, with a letter indi-
cating their state. Hexagon markers are robots already part of
the formation, with indication of their label. Arrows show the
predicted motion of each robot, and the shadow represents the
virtual force field generated by the current formation. Letter
‘F’ indicates a Free robot, slipping at the edge of the virtual
force field. Letter ‘E’ indicates a robot trapped in the forma-
tion aiming at a safer outside position. Letter ‘A’ indicates an
Asking robot, trying to keep the two candidate parents within
sight. The full hexagon markers are Joined robots that can
act as parents, and the hollow hexagon marker is a Joining
robot driven by the parents to the target position, represented
without a numerical label.

5.2.1 Free State

A robot in this state does not have a label because it

is not yet part of the formation. Robots in this state

update their graph according to the robots that have

already joined the formation. They are notified if a la-

beled node in the graph is already occupied or not. A

Free robot searches for an available label and when one

is found, if both parents are also within sight, transits

to the state Asking to send a request to join the forma-

tion with this label.

Free robots only broadcast their state, so that robots

nearby can sense them and avoid collisions. They cir-

cle around the current formation composed of Joined

robots and Joining robots. This is achieved by apply-

ing three virtual forces:

u = f(Fp,Fv,Fa),

where Fp is a force keeping the robot away from the

structure, Fv is a force perpendicular to Fp that com-

pels the robot to circle around the structure, and Fa is

a force pushing Free robots away from nearby robots

to avoid collisions. The function f(·) maps the virtual

force to a navigation command.
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F

J2

J1

J5

J3
J4

1

2

3

4
5

R

Fig. 5 Schematic of the Free state test. The F point is a Free
robot. Assuming it has five Joined neighbors, dots J1 to J5,
it is trapped. Ray FR is the reference direction of the local
coordinate of the Free robot, so α1 to α5 are the bearings
of each Joined neighbor w.r.t. this local frame. Sorting the
neighbors according to angle α1 to angle α5 and lining them
up, a polygon consisting of 5 Joined neighbors of the Free
robot is created.

5.2.2 Escape State

The Escape state is a secondary state under state Free.

Robots in this state follow the same communication

rule as a Free robot, but following a different behavior.

If a Free robot is trapped, i.e., it is inside a polygon

created by Joined robots, it is unable to move along

the outer edge of the already formed pattern and find

a proper position to join. To free itself from the poly-

gon, the robot transits to state Escape. A Free robot

tests if it is trapped at each control step. As in Fig. 5,

a Free robot sorts all its Joined neighbors according

to their relative bearing. By lining them up, we can

obtain a polygon composed of the Joined neighbors.

Then, we draw a ray from the Free robot. By counting

the number of intersection points between the ray and

the edges of the polygon, the Free robot can check if it

is inside the polygon, which occurs when the number of

intersections is odd. A trapped robot can free itself by

moving towards the Joined neighbor with the highest

label and then rotate around it. This escape strategy

works because the labeling algorithm grows the target

graph from the inside out, so labels with higher values

are closer to the exterior boundary of the formation.

5.2.3 Asking State

Once a robot gets a proper label and both parents are

within sight, it sends a message containing three items

to request this label. The message is a tuple (Asking,

ReqLabel, ReqID).

The first element encodes the state of the robot,

ReqLabel is the label being asked, and ReqID is a ran-

domly generated unique ID used to counter the situa-

tion where multiple robots ask for the same label.

The reply received from a Joined robot is a tuple

(Joined, ReqLabel, ReqID, Reply). The Asking robot

checks if the ReqLabel is the same as the label requested.

If this is the case, the robot further checks the Reply

value. If it is granted, and the ReqID is the same as

the one it sent originally, then the robot takes the label

and transitions to Joining. If not, it transitions back to

Free, looking for another available label.

The control law during the Asking stage must keep

the parents in sight. We use attraction to the joined

robots and repulsion from the surrounding free robots

through the following law:

u = f(Fp + Fa)

where Fp is the virtual force generated by the joined

robots, keeping the the Asking robot a given distance

from the already formed pattern; and Fa is the vir-

tual force generated by the nearby robots, pushing the

Asking robot away to avoid collisions. Function f(·)
maps the virtual force into velocity commands: it takes

the vector of virtual force vforce = (αforce, dforce) as in-

put, with αforce being the direction of the vector, and

dforce its magnitude. The output will also be a vector

vvelocity = (αvelocity, dvelocity), where:

αvelocity = αforce

and

dvelocity =

{
k · dforce if w · dforce ≤ vthreshold
vthreshold otherwise

where w is a parameter to scale the magnitude (empir-

ically determined) and vthreshold is a speed threshold.

5.2.4 Joining State

According to the model described in Section 4, we de-

rive a behavior as Equation (4) and prove that with this

control law, robots can be driven to form the desired

pattern. The behavior of a Joining robot is defined as

ui = −∇Φi(pi,pj ,pk)

The potential-field-based control law is interpreted as

a set of virtual forces that are translated into a speed

command. Based on pi, pj and pk, robot i can get

the position of parents j and k in its local coordinate

frame as pi
j = (dij , α

i
j) and pi

k = (dik, α
i
k). Using the

formation graph, the robot can also get the desired

distance from the two parents as dij and dik. Robot
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i first checks if it is on the correct side w.r.t. the two

parents. This is done by normalizing vector vnorm =

(pi
k−pi

j)/
∥∥pi

k − pi
j

∥∥, with vperp being obtained by ro-

tating vnorm anticlockwise by π/2 . If vperp ·pi
j > 0, the

robot is on the correct side. Let us assume robot i is on

the correct side: if it is sufficiently far from both par-

ents, i.e.,
∣∣∥∥pi

j

∥∥− dij∣∣ > dsafe and
∣∣∥∥pi

k

∥∥− dik∣∣ > dsafe,

or it is already between the two parents, which means

pi
j · vnorm < 0 and pi

k · vnorm > 0, it is applied a vir-

tual force represented as Fi = Fj + Fk, with Fj and

Fk being two attracting forces generated by the two

parents. If the robot is already near the target, namely∣∣∥∥pi
j

∥∥− dij∣∣ < dthreshold and
∣∣∥∥pi

k

∥∥− dik∣∣ < dthreshold,

we use the Lennard-Jones Potential to compute the

driving virtual forces as:

Fj = (fLJ(dij , dij), α
i
j)

Fk = (fLJ(dik, dik), αi
k)

where

fLJ(ddist, dtar) =
KLJ

ddist
·

((
dtar
ddist

)4

−
(
dtar
ddist

)2
)

in which KLJ is an empirically determined parame-

ter. If the robot is far from the target, which means∣∣∥∥pi
j

∥∥− dij∣∣ ≥ dthreshold or
∣∣∥∥pi

k

∥∥− dik∣∣ ≥ dthreshold,

we use a concave potential as:

Fj = (fcon(dij , dij), α
i
j)

Fk = (fcon(dik, dik), αi
k)

where

fcon(ddist, dtar) = Kmax · (
dtar
ddist

− 1)2Kexp−1

in which Kmax is a parameter set to the maximum

speed of the robot, and Kexp is another empirically-

determined parameter.

If the robot is not between the parents, and is on

the side of parent j, which means pi
j · vnorm > 0, the

virtual force is

Fi = Kmax · vnorm

If the robot is on the side parent k, namely pi
k ·vnorm <

0, the virtual force is then

Fi = −Kmax · vnorm.

If the robot is on the wrong side of the parents, if it

is far enough from both parents, as
∣∣∥∥pi

j

∥∥− dij∣∣
> dsafe and

∣∣∥∥pi
k

∥∥− dik∣∣ > dsafe, or it is already be-

tween the two parents, which means pi
j ·vnorm < 0 and

pi
k ·vnorm > 0, the robot goes between the parents with

Fi = Kmax · (pi
j + pi

k),

(a) t = 10 sec (b) t = 400 sec (c) t = 1500 sec

Fig. 6 Steps of the formation for a heart geometry formed by
114 robots. The black robots are Free, and the green-yellow
robots are Joined. Screenshot are taken from the ARGoS sim-
ulator.

meaning it will move to the correct side.

At this stage, robots broadcast their state and label

as the tuple (Joining, Label). When the distance to the

target is smaller than a tolerance ε, the robot transi-

tions to state Joined. If for any reason it lost commu-

nication with its parents, it transitions back to Asking.

5.2.5 Joined State

A Joined robot is part of the formation, which means

it can play the role of a parent for other robots. Such

a robot keeps broadcasting its state and label with the

tuple (Joined, Label).

Once a request is received, a Joined robot checks if

it is a parent of the point with the requested label. In

this case, and if it is also the parent with the highest

label, it is then responsible for sending a reply to the

asking robot. If the point is already occupied by another

robot, the Joined robot sends a refuse message (Joined,

ReqLabel,0,refuse).

If the position is still unoccupied, the joined robot

will choose a robot among the candidates (if many are

simultaneously asking) and reply as: (Joined, ReqLabel,

ReqID, granted).

In some cases, the free robot may be trapped in

the middle of joined robots. The robot then switches to

state Escape until it evades the trapped position.

6 Simulation Evaluation

The performance of the formation algorithm is eval-

uated with ARGoS (Pinciroli et al, 2012), a realistic,

physics-based simulator for multi-robot systems. Fig. 6

shows how a heart-shaped formation is generated pro-

gressively (Pinciroli et al, 2016). A systematic evalua-

tion follows.

6.1 Performance

The evaluation focuses on three aspects of the forma-

tion process:
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– Completion time: the time required to form a

complete shape;

– Joining time: the time elapsed between two suc-

cessive join events;

– Absolute positioning error: Eij between robots

i and j is calculated as Eij =
∣∣(dij − d̄ij)/d̄ij∣∣ where

d̄ij is the expected distance between robots i and j,

and dij is the actual distance measured at the end

of the experiment.

6.2 Simulation Setup

While our algorithm can form generic shapes, to ensure

comparability among different experimental conditions,

the robots are tasked with the formation of a grid. In

our simulation, we test three grid sizes: 5× 5, 10× 10,

and 15× 15.

M robots are uniformly distributed in the exper-

imental arena, an empty square of side L. We con-

sider three density configurations D: broad (D = 0.01),

medium (D = 0.05), and tight (D = 0.1). The arena

side L is calculated with L =
√

(MπR2)/D, where R

is the radius of the robot (R = 8.5 cm). We use the

marXbot (Bonani et al, 2010) robot model for our sim-

ulations, with a range-and-bearing sensor for situated

communication, and with its maximum speed set to

10 cm/s.

We also evaluate the scalability of the algorithm

with the number of robots N required to complete the

formation (e.g., N = 25 for a 5 × 5 grid). We deploy

M = kN robots, with k ∈ {1, 2, 3}. Every configuration

〈grid size, D, k〉 was tested 30 times, for a total of 810

runs.

6.3 Simulation results and discussion

We observed 3 failures out of all the 810 runs, leading

to a failure rate of 0.37%. All the failures occurred with

the high-density configuration (D = 0.1) and were due

to a robot trapped in the middle of the formation at

the very beginning of the formation process. No failure

occurred with low and middle density distributions.

Fig. 7 shows that both completion time and joining

time decrease with the factor k: this is because with

k = 1, every robot needs to find a position in the for-

mation and at the final stages of the formation process,

there are few Free robots that have to circle the forma-

tion looking for a label. With k > 1 the number of Free

robots increases, and so does the chance that a robot

is close to an available position. We also observe that

completion time slightly decreases with the initial robot

density (the parameter D), which is to be expected as

denser robots have to travel a shorter distance to find a

label. It is worth noting that the configuration param-

eters do not significantly affect the positioning error,

which is always lower than 8% (with a median around

4%). This is expected because the final position of each

robot in the formation relies on the virtual force gener-

ated by its parents and the position tolerance: assuming

a robot can get accurate distance and bearing informa-

tion from its neighbours and can physically travel to the

target position, then the formation error is only affected

by the parameters of the force field and the formation

tolerance value. Note that this is in general not the

case for real robots, and for this reason we conducted

the experiments presented in the following section.

7 Experimental Evaluation

We carried out experiments with the Khepera IV robots1

to verify our formation control algorithm. Fig. 8 shows

our experimental platform, which consists of an Opti-

track system (an infrared camera-based tracking sys-

tem), a software communication hub, and a swarm of

Khepera IV. To emulate situated communication, the

robots send their messages wirelessly to the software

hub. The software hub processes the messages received

from the robots and calculates relative positioning in-

formation from the tracking system data, and relays

them back to the receiving robots.

We ran two sets of experiments to validate our ap-

proach: (i) the formation of a regular 3 × 3 grid, re-

peated 10 times from different initial positions; and (ii)

4 formations with the shapes of the letters M, I, S and

T, which spell the name of one of the laboratories in-

volved in this work.

The formation control algorithm is implemented in

Buzz (Pinciroli and Beltrame, 2016). Our implemen-

tation, shown in Algorithm 1, first reads the graph file

and sets the experiment parameters within the reset()

function. The step() function is executed 10 times per

second, and it implements our algorithm’s state ma-

chine.

We measure the performance of the algorithm as

the positioning error of the formation Eij = dij − dij ,
where dij is the distance between robots i and j when

all robots are in state Joined, and dij is the desired

distance between the two robots.

7.1 Experiment Setup

Fig. 10 shows the results for the 3 × 3 grid formation,

using red diamonds for the target positions. In this ex-

1 https://www.k-team.com/khepera-iv
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Fig. 7 Simulation results from (Pinciroli et al, 2016). Each box corresponds to the distribution of a performance measure for
a specific experimental configuration 〈grid size, D, k〉 over 30 runs. The whiskers in the box plots indicate the 5th and 95th
percentile. The top plot reports the completion time in seconds; the middle plot reports the joining time in seconds; and the
bottom plot reports the positioning error.

periment, we fixed the robot with label 0 to be the

Khepera with ID K01, and randomly selected the ini-

tial positions of all other robots shown in Fig. 9. The
experiment was repeated 10 times, with different initial

conditions.

For our second set of experiments (forming the “MIST”

letters), the desired formation is shown in Fig. 13, with

the targets marked with red diamonds. Each formation

experiment was repeated twice, with random initial po-

sitions. The arena for the experiment was 2.5 m×2.5 m

and the position tolerance was set to 3 cm.

7.2 Experiment Results and Discussion

Fig. 9-11 report the results of the grid formation ex-

periments. Fig. 9 shows tests with two initial positions

as well as the final positions. Fig. 10 depicts the de-

sired formation with red diamonds and the final po-

sitions of the robots of all tests; round markers with

the same color indicate robots from the same test. As

the orientation of the final formation cannot be fixed,

we rotated and translated the graphs to overlay the

results. The final positions of robots converge around

the targets, with an error in most cases smaller than

the tolerance for joining the formation between -3 cm

and 3 cm). The worst-case error was ±6 cm, and we

attributed it to imprecise relative localization. Fig. 11

shows the details of the formation error for each test,

as well as the aggregate error. Fig. 12 shows the re-

sults for the second set of experiments, where the robots

form the shapes of the letters in the word “MIST”.

Fig. 13 depicts the final positions of the robots with

round markers of different colors for different attempts.

The robots converged to the targets with a formation

error illustrated in Fig. 14, generally within the range

of ±2 cm. A video for the experiments is available at

https://mistlab.ca/grid_MIST.avi.

8 Conclusions

The progressive deployment of a swarm of robots can

pave the way for many applications. In this paper, we

proposed a case study of pattern formation, that can

be applied to any shape described as a 2D point cloud.
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Algorithm 1 Structure of the robot control code

function reset()
readGraph()
initialSet()
msg = listen()

end function

function step()
if state == Free then

doFree()
else if state == Asking then

doAsking()
else if state == Joining then

doJoining()
else if state == Joined then

doJoined()
end if
broadcast(msg)

end function

function doFree()
searchProperLabel()
if seeParents() and onCorrectSide() then

state = Asking
end if
if IsTrapped() then

doEscape()
else

circleAroundPattern()
end if

end function

function doAsking()
sendRequestMessage()
if requestApproved() then

state = Joining
else if RequestDenied() or TimerOut() then

state = Free
end if
updateTimer()
stay()

end function

function doJoining()
if seeParents() then

if label == 1 then
navigateAccordingToParent()

else
navigateAccordingToPotentialField()

end if
else if reachedTarget() then

state = Joined
else if timerOut() then

state = Asking
end if

end function

function doJoined()
if receiveRequest() then

chooseChild()
approveRequest()

end if
end function
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Fig. 8 Structure of the experimental platform. An Opti-
track system gets the position of each robot through IR cam-
eras. Blabbermouth acts as a communication hub, combining
the communication messages and position information. The
Khepera robots receive position-tagged messages, emulating
situated communication. Our algorithm is implemented with
a Buzz script.

Fig. 9 Experiments with typical initial positions. The left
side shows the initial and final position with robots initially
placed around the robot with label 0. The right side show
robots initially placed on one side of the robot with label 0.

The point cloud is transformed into a directed acyclic

graph that is shared among the swarm members. When

robots are deployed, they agree on their assigned posi-

tion on the graph using only local communication and

navigate there. This is a first step towards the defi-

nition of behaviors for progressively deployed swarms,

and it shows how a formation can gradually grow in

time, with guaranteed convergence for the joining pro-

cess. In this paper, we provide a solid theoretical foun-
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Fig. 10 Final positions of the robots after 10 tests. The red
diamonds indicate the desired formation, while the round
markers show the experimental results. Markers with the
same color represent the same test.
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Fig. 11 Position error for the grid formation. The aggregate
formation error is shown in the rightmost column.

M I S T

Fig. 12 Experiment results of the “MIST” formation.
Robots are tasked to form four letters (“M”, “I”, “S” and
“T”) from random initial positions. The first row shows the
initial positions of robots, while the second shows the final
formations.

dation, a mathematical model, and sufficient conditions

for convergence.

The proposed algorithm was verified with extensive

simulations and with experiments on real robots. Our

simulations study the effects of swarm size (up to hun-

dreds of robots), available robots, and the density of

the initial robot distribution. To validate our simulated

experiments with real robots, we have implemented the

complete algorithm using the Buzz language and tested

it on a set of 10 Khepera IV robots. The results indi-

cate that our algorithm is robust to noise and that it

can handle different formations and shapes. The overall

placement error for our algorithm is below 5%.

We plan to apply this algorithm to practical ap-

plications, such as the deployment of sensor networks.

For instance, we are currently porting the algorithm to

a fleet of heterogeneous unmanned vehicles, for which

graphs can ease the zone coverage tasks for mapping

and to maintain network connectivity. Further research

includes considering robots that need to be in constant

motion, and also includes additional theoretical work

on progressive deployment, such as considering adap-

tive task allocation for heterogeneous swarms.
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