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Swarm based Path-Following for Cooperative
Unmanned Surface Vehicles

Marco Bibuli, Gabriele Bruzzone, Massimo Caccia, Andrea Gasparri, Attilio Priolo and Enrica Zereik.

Abstract—This paper proposes a swarm-based path-following
guidance system for an autonomous marine multi-vehicle system.
In particular, a team of Unmanned Surface Vehicles USVs is
required to converge to and navigate along a desired reference
path, while at the same time aggregating and maintaining a
range-based formation configuration. Firstly, a separate descrip-
tion is given for a swarm methodology, initially developed for
small ground mobile robots and exploited to aggregate the robot
team, and a virtual target based path-following guidance system
developed for USVs, exploited to drive not the single vehicles
but the robot formation as a whole. Then, the integration of
the two proposed methodologies is reported and proven, in
order to guarantee the feasibility and stability of the overall
guidance framework. Simulative results are proposed to validate
the effectiveness of the proposed methodology and to evaluate
the system performances.

Index Terms—Path-Following, Swarm, Guidance, USVs

I. INTRODUCTION

The goal of a continuous and widespread monitoring
of large water areas, as well as intensive sampling and
surveillance of oceans, harbors, lakes and rivers has brought
in the recent years to the definition and the development
of heterogeneous multi-vehicle frameworks, where a set of
networked agents cooperates and coordinates themselves to
achieve global objectives.
In particular, the need of fast-reliable, light-weight and low-
cost vehicles is a key issue for the development of such
multi-robot frameworks; the advantages with respect to huge
and fully-equipped single-vehicle systems are obvious: multi-
vehicle systems allow surveying of wider areas in less time,
different sensing devices can be mounted on different vehicles
thus lowering the cost of each single vehicle and achieving
a higher robustness of the entire framework, avoiding to
jeopardize the entire mission if a single robot or sensor
fails or gets damaged. Moreover, the tasks of each agent
can be re-planned to achieve different sampling resolution
of the zones of interest. Being Unmanned Surface Vehicles
(USVs) the interface between water and air environments,
they are often also used as mobile communication relays be-
tween Autonomous Underwater Vehicles (AUVs) and remote
control stations. For this reason, a number of studies and
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researches are dedicated to the coordination of such kind of
vehicles. The main goal of the work presented in this paper
is to merge a virtual target based path-following guidance
module developed for marine surface vehicle systems, with a
cooperative swarm methodology initially developed for small
ground mobile robots. The work relies on the intuitive idea
of developing a swarm aggregation behavior by means of
a simple potential-based attraction/repulsion strategy, while
using the path-following guidance system to guide the centroid
of the robots’ formation, and thus the swarm in a whole, onto
a desired path.

The paper is organized as follows: section II reviews the
state of the art of the swarm robotics literature, section III
presents some theoretical preliminaries required to introduce
the problem statement detailed in section IV. A review of the
dynamics’ modeling of unmanned surface vehicles and related
control schemes is reported in section V. The swarm and
path-following techniques are presented in section VI and VII
respectively. The integration of the two approaches to achieve
the goal of formation aggregation and guidance is reported in
section VIII. Simulative results are reported and described in
section IX, giving final conclusions in section X.

II. RELATED WORK

A large literature regarding robot swarms has appeared in
the last two decades. The paper [36] by Reynolds is one of
the pioneering works on this subject. The author introduces a
model for the motion of flocks of birds where the behavior of
each individual is simulated independently. Three basic rules
governing the interactions among the birds in the flock are
identified:

• Collision Avoidance: the members have to avoid colli-
sions among them and between them and environment.

• Velocity Matching: each member has to match the speed
of its neighbors.

• Flock Centering: each member has to remain close to
its neighbors.

In [35], the social potential field method is used to control
a large scale multi-robot system. This method consists in
designing the interaction functions governing the behavior of
each individual w.r.t. its neighbors. Note that, these social
potential fields agree with the rules proposed by Reynolds
in [36]; in particular, the repulsive term matches with the
collision avoidance rule, while the attractive term with the
flock centering one. One of the first complete theoretical
analysis concerning the stability of a swarming aggregation
algorithms is given in [2], where a linear asynchronous model
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is presented and its convergence properties are analyzed.
In the last decade, several swarming aggregation algorithms
have been proposed [23], [22], [11], [30], [13], [31]. In [23],
the authors introduce a decentralized continuous-time model
for finite-time swarm aggregation. The analyzed interaction
function if composed of a linear term to model the attraction
and an exponential term for the repulsion. A bound on the
radius of the convergence area is given along with the time
required by the swarm to reach it. The results of this work
are extended in [22] where classes of attractive and repulsive
functions are considered. In particular, a theoretical analysis
on the stability of the system and the ultimate boundedness of
the trajectory of the swarm is given. In [11], the assumption of
isotropic sensing among the robots is released generalizing the
model in [23]. The circular area where the swarm converges
into is detailed in terms of its radius and the stability of the
swarm is proven. The well-known Vicsek model is extended
in [30] by using an adaptive velocity swarm model. In [13],
a swarm aggregation control law for unicycles is proposed.
The control law is composed of a term for guaranteeing the
collision avoidance and a second term to keep the robots in
a compact configuration preserving the links among them.
Eventually, a bound on the size of the region of convergence
is detailed. In [31], a swarming algorithm for general sensing
digraph with not unitary weights on the edges is presented.
Indeed, the approach given in [22] is extended paving the way
to a more generalized framework. Some works consider, also,
the inevitable presence of actuator saturations. In [14], a set
of control laws to drive the robots from any initial condition
towards a desired configuration taking into account constraints
on the inputs is provided. In [28], a behavior-based approach
to formation maneuvers for groups of mobile robots that works
under the assumption of constrained input is proposed. In [6],
a flocking algorithm for a multi-agent system with bounded
control inputs is proposed; the agents are able to achieve all the
same velocity under the assumption of the connectivity of the
underlying communication graph. A formation control scheme
for multiple unicycles with saturated inputs is described in
[27].

The motion coordination of USVs with the aim of providing
and maintaining a communication infrastructure is of relevant
importance, as exploited in the AOSN (Autonomous Ocean
Sampling Network) Project, presented in [12] and [16], where
an extended interconnection between underwater, surface and
aerial vehicles is provided. For all of these reasons, a number
of approaches and techniques have been developed in order
to guide and control the motion of teams of marine vehicles.
First at-field experiments were carried out to test and validate
collision avoidance strategies for USVs based on COLREGS
rules, like in [3]. On September 2008 in Trondheimsfjord
(Norway), the first full-scale vehicle-following experiment in
a civilian setting worldwide was carried out. The experiment
involved a manned vehicle, a 30 m long research vessel with
upper speed of 13 knots, followed by a retrofitted leisure
boat of length 8.5 m with a maximum speed of 18 knots as
USV [7]. The following year the experiment was replicated
with a couple of slave vehicles following the master vessel
[8]. A similar experiment was carried out by CNR-ISSIA

with the Charlie USV following the dual-mode ALANIS
vessel [5] Successful results have been also gained by the
European Project GREX [1], [38] where one of the main
project goals was the creation of a conceptual framework and
middleware systems to coordinate a team of heterogeneous
robotic vehicles, presenting interesting ideas about the control
laws to be adopted in order to obtain an effective cooperative
behavior.

The work in [15] possibly represents the best reference
on the subject of exploitation of swarm approaches for the
guidance of multi-vehicle marine robots. In this works, the
authors propose a cooperative manipulation architecture for
polygonal objects by a USV swarm. The main drawback of
this work is that a full information sharing among the robots is
required. The work in [18] shows a simulation about a team
of autonomous vehicles that can be equipped with different
sensors with the aim to gather data for ocean monitoring
missions, e.g. about topics such as human-induced nutrification
of coastal waters and the increasing industrial pollution; such
issues require a reliable access to vast amounts of ocean-
observation data. Some of the previous paper’s authors pre-
sented another work (for details refer to [25]) about a dis-
tributed control algorithm for mobile aquatic sensor networks.
Researches on marine robotic swarming, presented in [19]
and [40], prove the great importance of the development of
swarm control algorithms, in these cases applied to the oil
pollution and to the the critical target localization and enemy
engagement problems, respectively. Finally, issues about the
security challenges for swarm robotics are described in [24]
and [39].
The great interest for the marine robot swarms and the large
number of possible applications, partially described in the lit-
erature, emphasize the importance to obtain actual algorithms
for the team control and to develop a system of real vehicles
able to effectively perform the established mission.

III. PRELIMINARIES

From a mathematical point of view, as proposed in [22],
[21], [20], the swarm system is composed by a set X of
n robots, each one characterized by the vector xi(t) ∈ Rm
with i = 1, . . . , n of cartesian coordinates on the horizontal
plane. Let us denote with x̄(t) = 1

n

∑n
i=1 xi(t) the (instan-

taneous) barycenter of the swarm and let us denote with
ϵi(t) = xi(t)− x̄(t) the vector distance of each agent i from
it. Furthermore, let us denote with χ(t) =

[
x1(t) . . . xn(t)

]T
and ϵ(t) =

[
ϵ1(t) . . . ϵn(t)

]T
, where χ(t), ϵ(t) ∈ Rnm, the

collection of all the agents locations and distances from the
barycenter, respectively. To simplify the notation, in the rest of
the paper the time dependency will be omitted when implied
by the context.

The interactions among the robots can be described
by an undirected proximity graph G = {V,E}, where
V = {vi : i = 1, . . . , n} is the set of nodes (agents) and
E = {ϵij} is the set of edges (connectivity) representing
the point-to-point communication channel available among the
agents. An edge ϵij exists if the agents i and j are within
their visibility range R, that is: ∥xi − xj∥ ≤ R. As the graph
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is undirected the existence of the edge ϵij (from node i to
node j) implies the existence of the edge ϵji (from node j to
node i). Therefore, in the following they will be used without
distinction to indicate a connection between agents i and j.
Let us denote with A(G) the adjacency matrix, that is a n×n
matrix whose generic element aij = 1 if i ̸= j and ϵij ∈ E,
aij = 0 otherwise. The number of the incoming edges ∆i(G)
of node i is called the degree. We define ∆(G) as the degree
matrix: it is a n×n diagonal matrix whose elements are ∆i(G),
i.e., the degree of node i. In the following we will refer to Ni

as the neighborhood of agent i, namely the set of indices of
the agents directly connected through an edge with agent i.
Clearly, it is |Ni| = ∆i(G). Finally we define the Laplacian
matrix of a graph G as L(G) = ∆(G)−A(G). To simplify the
notation we will refer to it as L dropping its dependence on
G unless strictly required.

Let us now review some properties of the Laplacian of an
undirected graph. First of all, L is a weakly diagonal dominant
symmetric matrix by construction. Furthermore we have that
the row sum and the column sum are each equal to zero. In
particular any graph Laplacian has always at least one null
structural eigenvalue whose corresponding eigenvector is the
vector of ones 1 of appropriate dimensions; in other words
∀G, L(G) 1 = 0 and 1TL(G) = 0T . The number of null
eigenvalues corresponds to the number of connected compo-
nents of G and Rank(L(G)) = n− c where n is the number
of nodes and c is the number of connected components of G;
for details refer to [34]. All the eigenvalues of the Laplacian
are real and positive in [0, 2∆max(G)], where ∆max(G) is the
maximum degree between the nodes in the graph, as it can be
proved by applying the Gershgorin disc theorem as in [34].
Furthermore, the second smallest eigenvalue λ2, namely the
algebraic connectivity, provides an information regarding the
connectedness of the graph.

IV. PROBLEM STATEMENT

The task of swarm aggregation is to define a proper in-
teraction law to implement the three basic rules mentioned
in section II, namely collision avoidance, velocity matching
and flock centering. Furthermore, this control law should be
based on local information and computed independently by
each agent of the swarm leading to a complete decentralized
and distributed aggregation approach. In order to achieve that,
the following basic assumptions are required:

i) each robot knows its position with respect to a common
reference frame - satisfied by reliability of GPS position
measurements available onboard each USV, or alterna-
tively by exploiting distributed algorithms as in [17];

ii) a reliable network infrastructure is needed to support
inter-robot decentralized communication for position data
sharing - WiFi systems can provide multi-access commu-
nication framework for data exchange.

Regarding the network infrastructure, it should be noticed
that the connectivity maintenance is a relevant problem es-
pecially if the agents are moving in a cluttered environment.
Nevertheless, this problem has been widely investigated in the
robotics community (see [41], [37]) and thus it will not be
object of this work.

While the swarm methodology fulfills the task of vehicle
formation aggregation, the parallel task of driving such a
formation onto a desired reference path has to be carried out.
This latter goal is fulfilled by means of a virtual target based
path-following approach developed in [4].

This task is carried out not directly driving the motion
of each robot, but guiding the whole swarm. In particular
the goal is to drive the instantaneous center of mass of the
swarm towards the path, i.e., converging to a proper virtual
target that moves along the path itself. To achieve such a
goal, a proper velocity is computed and imposed to the swarm
aggregation algorithm, which in turn will drive the motion of
each vehicle according to such reference velocity. A schematic
representation of the problem is reported in Fig. 1.

Fig. 1. Swarm aggregation and convergence to the path (on the left), swarm
maintenance and path following (on the right).

V. DYNAMICS

For the dynamical representation of small size USVs, practi-
cal models are used for the aim of guidance and control system
design. The term practical refers to the consistency, from the
point of view of the accuracy degree, to the quality in terms
of noise and sampling rate of the measurements provided by
the sensors on-board the vehicles.

The models for the yaw-rate and surge velocity dynamics
are represented by the following non-linear form, already
described in [10] and [9]:

m̃uu̇r = k̃u2
r
u2r + k̃n̄2δ2 n̄

2δ2 + n̄2 (1)

Ĩr ṙ = k̃r|r|r|r|+ k̃n̄2 n̄2 + n̄2δ (2)

where δ is the rudder angle, m̃u and Ĩr are the inertia terms,
k̃u, k̃u2

r
, k̃r and k̃r|r| are the drag coefficients, k̃n̄2δ2 represents

the resistance due to the rudder, and k̃n̄2 takes into account
the vessel longitudinal asymmetries, which change with the
different payload configurations.

In order to design linear and angular velocity controllers, the
dynamical models given by eq. (1) and eq. (2) have been con-
sidered, neglecting, i.e. considering as external disturbances,
the resistance due to the rudder and the vessel longitudinal
asymmetries. The result is the following generic 1-dof model
for surge and yaw motion:

m̃ξ ξ̇ = k̃ξξ + k̃ξ|ξ|ξ|ξ|+ τ (3)

where m̃ξ, k̃ξ and k̃ξ|ξ|, τ represent inertia, linear and
quadratic drag coefficients and control action respectively.
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On this basis, a PI (Proportional Integral) gain scheduling
controller can be adopted, considering eq. (3) as a generic
nonlinear model:

m̃ξ ξ̇ = f(ξ) + τ (4)

According to the work in [26], it is possible to design a
parameterized family of PI linear controllers at each constant
operating point ξ, obtaining a desired characteristic equation
for the closed-loop linearized system in the form

s2 + 2σs+ σ2 + ω2
n = 0 , σ > 0 (5)

which does not depend on the particular constant operating
point.

With this solution the velocity control for both surge and
yaw-rate dynamics is achieved; anyway regarding the yaw
control, sometimes it is more convenient to command the
desired orientation, i.e. the vehicle direction of motion, rather
than the velocity of rotation. To cope with this task, defining
the actual direction of motion ψ as pointed out in [9] and the
desired motion orientation ψ∗, a solution is proposed in [33],
by means of the development of an Integral–Proportional–
Derivative (I–PD) type, in which the control difference is
fed to the controller output through the integral channel only.
Therefore, abrupt changes in desired heading are not passed
directly to the actuators, resulting in smooth actuation signals:

N = KIψ

∫ t

0

(ψ∗ − ψ) dt−KPψψ −KDψψ̇ (6)

Properly setting the three control parameters KIψ , KPψ and
KDψ as described in [33], a third-order linear transfer function
is obtained:

ψ

ψ∗ =
1

a3ψs3 + a2ψs2 + a1ψs+ 1
(7)

VI. SWARMING ALGORITHMS FOR MULTI-ROBOT
SYSTEMS

In order to apply swarming algorithms originally developed
for multi-robot systems to fleet of unmanned surface vehicles,
let us review the approaches proposed in [22], [21], [20].

Let us consider a swarm composed of n robots with a
network topology encoded by an undirected fully connected
graph G = {V,E}. As in [22], consider the following
dynamics for each robot i:

ẋi =
∑
j ̸=i

g(xi − xj) (8)

where g(·) is the interaction function representing the function
of attraction and repulsion between neighboring robots. Let
us denote with ga(·) : R+ → R+ and gr(·) : R+ → R+

the attractive and repulsive contributions, respectively. The
interaction function g(·) can be defined as follows:

g(y) = −y [ga(∥y∥)− gr(∥y∥)] , ∀ y ∈ Rm. (9)

Note that the interaction function g(·) given in eq. (9) is
odd, namely g(y) = −g(−y). This is an important feature
of the interaction function g(·) that leads to an aggregating
behavior. Note also that the term y ga(∥y∥) represents the

actual attraction, whereas the term y gr(∥y∥) represents the
actual repulsion; moreover they both act on the line connecting
the two interacting individuals, but in opposite directions.

Let us consider the following assumptions for the attractive
and repulsive functions:

Assumption 1: There exist a unique distance δ corresponding
to which we have ga(δ) = gr(δ). Moreover, we have
ga(∥y∥) ≥ gr(∥y∥) for ∥y∥ ≥ δ and gr(∥y∥) > ga(∥y∥) for
∥y∥ < δ.

Assumption 2: There exist corresponding functions
Ja(∥y∥) : R+ → R+ and Jr(∥y∥) : R+ → R+ such that
∇y Ja(∥y∥) = y ga(∥y∥) and ∇y Jr(∥y∥) = y gr(∥y∥).

Assumption 3: The attractive and the repulsive terms have
to fulfill the following requirements:

ga(∥y∥) ≥ α

gr(∥y∥) ≤
β

∥y∥
(10)

with α, β ∈ R+.

In [22] the following properties were proven:
P1 The barycenter x̄ of the swarm is stationary over time;
P2 The swarm converges to a steady configuration;
P3 The swarm moves towards and remains within a bounded

region;
P4 The swarm reaches the bounded region in finite time.

In particular, the following characterization of the bounded
region was provided in [22]:

Theorem 1. Consider a swarm of n mobile robots with
dynamics in (8) for which Assumptions 1,2 and 3 hold. Then
as time progresses all the members of the swarm will converge
to the following bounded region:

Br =
{
x ∈ Rm : ∥x− x̄∥ ≤ β

α

}
. (11)

In [21] the authors extended these results by considering
the additional constraint of limited interaction among robots
according to the network topology encoded by the (time-
varying) graph G(t). As a result, the dynamics given in eq. (8)
is modified as follows:

ẋi =
∑

j∈Ni(t)

g(xi − xj), i = 1, . . . , n (12)

where Ni(t) is the time-varying neighborhood of agent i. The
authors proved that under the assumption of preserving the
connectivity of the network topology the properties discussed
above still hold. Furthermore, they proved the bounded region
not only to be a function of the parameters of the attractive
and repulsive functions but also of the algebraic connectivity
λ2 of the Laplacian matrix encoding the network topology.

In particular, the following result was given in [21]:

Theorem 2. Let us consider a swarm of robots for which
Assumptions 1, 2 and 3 hold. Let us assume that each robot
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has the dynamics given in eq. (12) with the interaction function
g(·) defined according to eq. (9). If the graph G remains
connected over time the swarm moves towards and remains
within a bounded region defined as:

Br =
{
x ∈ Rm : ∥x− x̄∥ ≤ β∆max(G)

√
n

λ2(L)

}
(13)

where ∆max is the greatest among the robots degrees.

Notably, this result was further improved in [20] by mod-
eling the saturations of actuators in the robots dynamics. As
a consequence, the dynamics given in eq. (12) was modified
as follows:

ẋi = k

∑
j∈Ni(t)

g(xi − xj)

1 +
∥∥∥∑j∈Ni(t)

g(xi − xj)
∥∥∥ , (14)

where k ≥ 0 is the saturated gain and the interaction function
it still given by eq. (9), under Assumptions 1,2 and 3.

A direct consequence of the actuator saturation constraint
is the loss of property P1, i.e., the swarm barycenter is no
longer stationary. This is due to the fact that, while the mutual
effects of interacting robots are always symmetric in the model
given in eq. (8), this is not true under limited visibility as if
a saturation occurs. Nevertheless, the authors showed that the
model given in eq. (14) still exhibits properties P2-P3 while,
regarding the P4, they proved that the swarm gets arbitrarily
close to the bounded region in finite time.

In particular, by introducing a further assumption on the
Laplacian matrix built with respect to the normalizing factor
f(xi) =

1

1+
∥∥∥∑j∈Ni(t)

g(xi−xj)
∥∥∥ , it is possible to establish the

following theorem.

Theorem 3. Let us assume that each robot has the dynamics
given in eq. (14) with the interaction function g(·) defined
according to eq. (9) under Assumptions 1,2, and 3. If the graph
G remains connected over time the swarm moves towards and
remains within a bounded region defined as:

Br =
{
x ∈ Rm : ∥x− x̄∥ ≤ β

α

(n− 1)

λ2,min

}
. (15)

with λ2,min a lower bound on the Laplacian matrix algebraic
connectivity.

Proof. First of all, note that the existence of λ2,min can be
guaranteed by adapting the approach given in [37]. Then,
consider the following Lyapunov candidate:

V (t) =
1

2

n∑
i=1

ϵi(t)
T ϵi(t). (16)

Its time derivative is (the bounds of the summation are omitted
for compactness):

V̇ (t) =
∑
i

ϵTi ϵ̇i =
∑
i

ϵTi (ẋi − ˙̄x) =
∑
i

ϵTi ẋi︸ ︷︷ ︸
V̇1

−
∑
i

ϵTi ˙̄x︸ ︷︷ ︸
V̇2

.

As reported in [20], the motion of the barycenter does not
affect the size of the region where the swarm is going to
aggregate, i.e., V̇2 = 0.

We now investigate the term V̇1. Without loss of generality,
let us omit the constant k in (14). We have

V̇1 =
∑
i

ϵTi

∑
j∈Ni(t)

−g(xi − xj)

1 + ∥
∑
j∈Ni(t)

−g(xi − xj)∥

=
∑
i

ϵTi

∑
j∈Ni(t)

−g(ϵi − ϵj)

1 + ∥
∑
j∈Ni(t)

−g(ϵi − ϵj)∥

= −
∑
i

f(xi)ϵ
T
i

∑
j∈Ni(t)

g(ϵi − ϵj). (17)

Therefore, eq. (17) can be rewritten as follows:

V̇1 = −
∑
i

f(xi)ϵ
T
i

∑
j∈Ni(t)

g(ϵi − ϵj)

= −
∑
i

f(xi)

ϵTi ∑
j∈Ni(t)

(ϵi − ϵj)ga(∥ϵi − ϵj∥)︸ ︷︷ ︸
V̇a

+ϵTi
∑

j∈Ni(t)

(ϵi − ϵj)gr(∥ϵi − ϵj∥)


︸ ︷︷ ︸

V̇r

We now further investigate the term V̇a. Using the properties
of the Laplacian matrix and Assumption 3, we have:

V̇a = −
∑
i

f(xi)ϵ
T
i

∑
j∈Ni(t)

(ϵi − ϵj)α = −αϵT L̄ ϵ

≤ −αλ2,min

∑
i

∥ϵi∥2. (18)

where L̄ = ΓL, with Γ a diagonal matrix whose elements on
the main diagonal are defined as γii = f(xi). As far as V̇r is
concerned, the following holds:

V̇r ≤
∑
i

ϵTi
∑

j∈Ni(t)

(ϵi − ϵj) f(xi)
β

∥ϵi − ϵj∥

≤
∑
i

∥ϵi∥
∑

j∈Ni(t)

∥ϵi − ϵj∥ f(xi)
β

∥ϵi − ϵj∥

≤
∑
i

∥ϵi∥β (n− 1) (19)

Now combine eqs. (18) and (19) to get:

V̇1 = V̇a + V̇r ≤ −αλ2,min

∑
i

∥ϵi∥2 + β (n− 1)
∑
i

∥ϵi∥

≤
∑
i

∥ϵi∥
(
− αλ2,min∥ϵi∥+ β (n− 1)

)
(20)

which is negative definite if

∥ϵi∥ >
β

α

(n− 1)

λ2,min
. (21)

Therefore, the solution of the system is bounded within the
region:

∥x− x̄∥ ≤ β

α

(n− 1)

λ2,min
(22)
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Note that differently from the analysis carried out in [20], in
the proof of Theorem 3 the contribution given by the single ϵi
to the time derivative of the Lyapunov candidate is considered.
Indeed, this allow to obtain a more refined characterization of
the swarm convergence area which does not involve the use of
the max function. Furthermore, it should be noticed that the
control law given in eq. (14) does not formally guarantee the
collision avoidance among the swarm members. Nevertheless,
this problem could be easily overcome by substituting (14)
with the enhanced control law provided in [29]. Its integration
will be subject of upcoming works.

VII. PATH-FOLLOWING ALGORITHM

The aim of this work is to develop a guidance system
capable of driving the entire robotic formation, aggregated by
means of the swarm behavior, towards and along a predefined
reference path. A brief introduction to the essential concepts
of the virtual target based path-following approach for single-
vehicle guidance is given in this section (further details, proofs
and experimental results can be found in [4] and references
therein). Subsequently, such path-following approach is ap-
plied to the task of swarm path-following, not guiding the
motion of each vehicle but providing the convergence to and
the following of the path by the swarm in a whole.

By referring to Fig. 2 and assuming the vehicle’s motion re-
stricted to the horizontal plane, the task consists in the zeroing
of both the position error vector d, i.e. the distance between
the vehicle and the virtual target attached to the Serret-Frenet
frame < f >, and the orientation error β = ψ − ψf , where
ψ and ψf are the vehicle’s direction of motion and local
path tangent respectively, expressed with respect to the earth-
fixed reference frame < w >. Following the geometrical and

Fig. 2. Path-Following modeling framework.

kinematic analysis carried out in [4], the distance error model,
expressed with respect to the frame < f >, has the following
form: {

ρ̇ = (cc ν − 1) ṡ+ U cosβ
ν̇ = −cc ṡ ρ+ U sinβ

(23)

where cc is the local path curvature, ṡ is the speed of the virtual
target along the path and U the total speed of vehicle (speed
along the direction of motion) with respect to the earth-fixed
reference frame. In order to solve the path-following problem
for a single-vehicle system, the aim is to develop a proper
approach angle function ψ∗, designed to reduce the linear
error components (ρ and ν) to zero. Following the development
carried out in [4], the desired angle ψ∗ is a function of the
cross-track error ν summed with the local path tangent, thus
ψ∗ = ψf+φ(ν), where the function φ(ν) is required to satisfy
the following constraints:

|φ(ν)| < π

2
; νφ(ν) ≤ 0 ; φ(0) = 0

Relying on a low level controller, providing an auto-heading
regulator capable of tracking desired orientation profiles, it
can be stated that considering Vψ = 1

2 (ψ − ψ∗)2 as the
candidate Lyapunov function, the low level controller provides
a behavior such that V̇ψ ≤ 0, i.e. the vehicle orientation
converges to the desired angle ψ → ψ∗ and it can be
rewritten as β → φ(ν). Moreover it’s worth noticing that
when V̇ψ = 0, an invariant set is defined, in which the
condition β = φ(ν) holds. The task of the path-following
controller design is achieved by the definition of the Lyapunov
function V = 1

2 (ρ
2 + ν2); computing the time derivative of

the function V , the following expression is obtained:

V̇ = ρρ̇+ νν̇

= −ρṡ+ ρU cosβ +−νU sinβ

= V̇ρ + V̇ν

substituting ρ̇ and ν̇ with the equation system (23) and defining
V̇ρ = −ρṡ+ ρU cosφ(ν) and V̇ν = −νU sinβ.
Following the methodology of [4], the speed of the reference
frame ṡ, i.e. the velocity of the virtual target moving along the
path, can be used as an additional control variable. Imposing

ṡ∗ = Kρρ+ U cosβ (24)

as the desired virtual target speed, where Kρ is a tunable
controller parameter, the function V̇ρ assumes the following
form:

V̇ρ = −Kρρ
2 ≤ 0 (25)

About V̇ν , recalling the above-mentioned assumption on the
attraction to the invariant set defined by V̇ψ = 0, β can be
substituted by φ(ν), obtaining:

V̇ν = νU sinβ = νU sinφ(ν) (26)

Selecting the function φ(ν) as

φ(ν) = −ψa tanh(Kνν) (27)

with Kν as a tunable controller parameter and ψa ∈
[
0; π2

]
the maximum approach angle with respect to the local tangent
ψf , the term νU sinφ(ν) is ≤ 0 because of the assumption
made on the function φ(ν).
Being both the terms V̇ρ and V̇ν ≤ 0, thus entailing V̇ ≤ 0,
the global asymptotic stability for the path-following guidance
system is proven.
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VIII. SWARM BASED PATH-FOLLOWING

In this section, the proposed swarm based path-following
algorithm for a fleet of unmanned surface vehicles is described.
The idea is to provide a unified framework obtained by
merging the path-following strategy originally developed in
[4] for a single surface vehicle, with the swarming algorithm
proposed in [20] and originally developed for teams of mobile
robots. In particular, the following control input should be used
for each USV:

ẋi = usi + ug (28)

where the term usi , different for each USV, is the control effort
required to reach a collective behavior while the term ug ,
common to all the USV, refers to the expected trajectory of
the fleet centroid, computed with reference to section VII as:

ug =

[
u∗ cosψ∗

u∗ sinψ∗

]
(29)

where u∗ is the desired speed for the formation along the path
and ψ∗ is the reference guidance angle computed by the path-
following module, i.e. the direction of motion that the overall
swarm formation has to assume in order to converge to and
follow the reference path.
An important issue that has often to be taken into account
when developing techniques and algorithms for unmanned
surface vehicles is the constraint of the one-directional surge
motion: being many vehicles stern-propelled, they provide a
backward motion (negative surge speed) which is many times
less efficient with respect to the forward motion (positive surge
speed). For this reason, marine vehicles are commanded to
work only with forward motion, thus the positivity constraint
of the reference speed has to be imposed. In the case of the
proposed application of swarm path-following, the resulting
reference velocity vector has to be generated maintaining
the same π-sector direction of the path-following velocity
contribution, i.e. ∠(ẋi) ∈ [∠(ug) − π/2;∠(ug) + π/2]. Thus
the condition ∥usi∥ ≤ ∥ug∥,∀i has to be guaranteed in order
to avoid: i) motion inversions, given by the sign change of
the resulting reference ẋi; ii) steering behaviors generated by
the ẋi direction’s change. From eq. (14), it can be stated that
the swarm velocity contribution for the aggregation behavior
is bounded by the value k, having ∥usi∥ ≤ k, ∀i. Thus, posing
k < ∥ug∥, where ∥ug∥ represents the desired speed along
the path, the fulfillment of the condition ∥usi∥ ≤ ∥ug∥,∀i is
always guaranteed.
Finally, it should be noticed that in the case of a time
variant desired path-following speed profile u∗g = u∗(t), the
parameter k can be tuned over time to satisfy the positive surge
speed constraint This can be achieved by simply choosing
k = k̃ u∗(t) with 0 < k̃ < 1. Indeed, this would enforce
the constraint:

∥usi (t)∥ < ∥ug(t)∥ ∀ t ≥ 0. (30)

To the aim of investigating how the stability property of
the two control terms is affected by their interaction, the
analysis is carried out assuming the swarm to be moving in an
obstacle-free environment. Regarding the swarming behavior,
it should be noticed that since the guidance control term ug(t)

is common to all USVs, the same stability analysis proposed
in [20] can be considered by exploiting an opportune coor-
dinate transformation to a frame which moves according to
the guidance control term itself. Regarding the path-following
algorithm, it should be noticed that the actual control term
for each USV given in eq. (28) must fulfill the constraint
given in eq. (30). This allows to compute an upper bound
on the maximal instantaneous discrepancy ∆ψ between the
desired motion direction ψ for the swarm centroid and the
actual angle of the vector tangent to the centroid trajectory.
More specifically, this can be obtained by considering the
maximal discrepancy between the desired reference angle ψ⋆

and the angle of the velocity vector in eq. (28) for any USV,
by assuming the two control terms to be orthogonal vectors,
that is:

∆ψ = max
i∈1,...,N

{
arctan

(
∥usi (t)∥
∥ug(t)∥

)}
(31)

Furthermore, it should be noticed that according to the analysis
carried out in [20] the aggregation control term usi (t) goes to
zero as time goes to infinity, therefore the discrepancy ∆ψ
is a vanishing term. Nevertheless, in order to investigate how
this discrepancy affects the guidance of the swarm centroid
during the transient phase of the swarm aggregation, eq. (26)
is recalled and rewritten keeping into account the discrepancy
term, thus obtaining:

V̇ν = νU sin(ψ∗ +∆ψ − ψf ) = νU sin(φ(ν) + ∆ψ) (32)

Applying trigonometric rules, the term sin(φ(ν) + ∆ψ) can
be rewritten as

1√
∥ug(t)∥2 + ∥usi (t)∥

2
[∥ug(t)∥ sinφ(ν) + ∥usi (t)∥ cosφ(ν)]

where ∥ug(t)∥ ≡ U , substituting this latter in eq. (32), the
following form is obtained:

V̇ν =
νU√

U2 + ∥usi (t)∥
2
[U sinφ(ν) + ∥usi (t)∥ cosφ(ν)]

Being the term ∥usi (t)∥ positive and bounded and |φ(·)| < π
2

by definition, defining the term Ũ
.
=

√
U2 + ∥usi (t)∥

2, the V̇ν
can be rewritten considering a positive disturbance term ϵ for
the path-following module

V̇ν =
U

Ũ
ν [U sinφ(ν) + ϵ]

To achieve the stability requirement V̇ν ≤ 0, the following
condition must hold:

U sinφ(ν) + ϵ ≤ 0

The analysis leads to the result that the path-following error
component ν will be bounded by the limit value

ν̃ = φ−1
(
sin−1

( ϵ
U

))
that is bounded for ϵ

U < sin(1), limit that could be easily
satisfied setting the gain k accordingly. It has to be recalled
that ϵ is a vanishing term that tends to zero as the swarm
aggregation is reached, thus the worst case analysis carried
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out imposes limit conditions only during the transient phase
of the swarm formation.

Some further remarks have to be reported concerning the
issues of path curvature and number/position of vehicles in
the swarm. It is obvious that during path-following execution,
each vehicle is subject to a different curvature depending on
its position with respect to the swarm centroid; vehicles on
the border positions of the swarm and closer to the path curve
center are subject to a greater curvature, as depicted in Figure
3. If such a curvature value cannot be assumed by the vehicle,
the swarm will tend to disaggregate until the crucial part of
the path has been passed. Being not possible to overcome the
physical constraints imposed by the vehicles themselves, the
problem has to be faced at planning level, i.e. designing the
desired reference paths in such a way that the swarm formation
could perform. To this aim, studies and researches can be
found in literature regarding the issue of curvature constrained
path planning, as for instance the work [32].
An estimation of curvature constraint can be anyway calcu-

Fig. 3. Curvature assumed by robots during curve’s motion.

lated making some simple assumptions. Considering a swarm
of n vehicles, in order to evaluate the maximum curvature that
the farther vehicles, with respect to the swarm centroid, will
assume during curves, the worst a regime swarm configuration
that has to be considered is the one where the vehicles assume
a circular aggregation, as represented in Figure 4.

Being η the equilibrium distance of attraction/repulsion
aggregation forces and α = 2π

n , the swarm radius can be
computed by:

L =
η

sin α
2

=
η

sin π
n

Defining ccp the maximum curvature of the reference path
and thus Rp = 1/ccp the least curvature radius of the path,
the most internal vehicles of the swarm will be subject to
a curvature radius Ri = Rp − L, whose curvature value is
cci = 1/Ri, which in turn brings to the relations between
curvatures ccp =

cci
1+Lcci

.
Considering ccmax the maximum curvature value that a vehicle
can assume, thus the maximum curvature along the path must

L

Fig. 4. Worst swarm configuration to evaluate maximum curvature assumed
by the vehicles.

satisfy the condition

ccp ≤ ccmax

1 + Lccmax

in order to guarantee that the swarm will properly follow the
reference path. Thus the ccp can be used as a constraint to
generate suitable desired path references.

IX. SIMULATIVE RESULTS

Being a set of small USVs (dimensions < 1 m) actually
under development, this section reports only simulative
results, based on practical dynamical and kinematic models
that fit with characteristics of the Charlie USV, as already
introduced in section V and proven by the authors in [4],
[10] and [9].

The closed loop dynamics’ control has been implemented,
for the sake of simplicity at simulation level, as stable linear
transfer functions (for both the surge and yaw dynamics) as
described in [9] and [33].
The results reported in this section are relative to a scenario
where four vehicles are required to assume the desired forma-
tion, which is determined by the two attractive and repulsive
potential functions respectively, derived from eq. (10):

ga(d) = α

gr(d) =
β

(d− 2η)

(33)

where d is the Euclidean distance between two robots ∥xi−xj∥
and η a safety region slightly larger than the physical space
occupation of the vehicle. Note that, the term η, originally
introduced in [22] for modeling agents with finite size, is
meant to limit the interaction between the robots up to the
distance 2η. Indeed, this allows to easily integrate a practical
solution for the collision avoidance which as stated in the
previous section of the paper cannot be guaranteed formally. In
particular, an additional unbounded repulsive term gca can be
enabled when two vehicles come close to a collision situation,
i.e. when the relative distance assumes a value below 2η.
From a mathematical point of view, equation (9) is modified in
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g(d) = −d [ga(d)− gr(d)− gca(d)] and the additional term
gca has the form of:

gca(d) =
2η − d

d2
(34)

which is enabled when the condition 0 ≤ d ≤ 2η holds.
For all the experiments, the value of the attraction and
repulsion function parameters are set to α = 1.0, β = 2.0,
η = 3.0.

The first reported experiment is focused on the analysis
of the vehicles’ motion during the pure swarm aggregation,
thus setting the formation reference velocity ug , with respect
to eq. (28), as a constant vector with magnitude |ug| = 1
m/s as desired cruise speed and a fixed course defined by
∠(ug) = π/2. The trial is initialized with stationary robots,
positioned in random locations; as soon as the trial is executed
the vehicles’ motions evolve driven by the swarm aggregation
function, leading the robots to a regime position in the forma-
tion, as reported in Figure 5 where the solid lines represent the
motion of the related vehicle and the dotted line is the motion
of the formation centroid. The vehicles’ motion is directed
towards a π/2 course and the speed profiles of all the vehicles
reach the cruise speed value of 1 m/s, as defined by the vector
ug , with reference to Figure 6. Regarding the velocity profiles,
two main issues have to be discussed:

• the required velocity of each robot presents oscilla-
tions, due to the swarm aggregation functions; the char-
acteristics of such an oscillatory behavior can be re-
shaped/attenuated by the definition of different attrac-
tion/repulsion functions. It has to be underlined that, for
the particular case, such oscillations are in the bandwidth
of the dynamics’ controllers, thus the velocity reference
can be tracked by the vehicle (this is reported in details
in the further experimental results);

• the overall guidance system has to keep into account the
physical limits of the vehicle that, for the particular case
of the Charlie vehicle (and in general for small USVs),
are given by the minimum (in term of the lowest speed
at which the vehicle is capable of properly maneuver)
and maximum (highest operative condition) surge speeds
of about 0.5 and 1.5 m/s respectively. This issue is easily
managed recalling the assumptions defined in section
VIII: the speed contributions generated by the swarm
aggregation function are bounded and belong to (−k; k).
Setting the value k = 0.5, then it can be guaranteed that
the resulting surge speeds to be tracked are bounded by
the limit values |ug| ± k, thus obtaining umin = 0.5 and
umax = 1.5.

The second experiment combines the swarm aggregation be-
havior with the path-following guidance of the overall robots’
formation, guiding the team to converge to and track a quasi-
sinusoidal shaped path, defined by a 6th order polynomial
parametric curve.
The path-following module parameters have been set to:
Kρ = 1.0 , Kν = 0.3 , ψa = π/3
The initial configuration is the same of the previous experi-
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Fig. 5. Robots’ motions during swarm aggregation evolution.
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Fig. 6. Robots’ speed profiles assumed during swarm aggregation evolution.

ment, with a randomly generated initial position of the robots.
Figure 7 shows the aggregation behavior combined with the
motion towards the reference path. It can be noticed how
the relative position of each vehicle within the formation is
not fixed, but only constrained by the inter-vehicle distances;
thus the position in the formation is only function of the
initial position and evolution along the desired reference.
Furthermore, it can be noticed how the formation centroid
converges to and track the path for all the experiment, proving
the validity of the approach. In Figure 8, for each vehicle,
the actual surge speed and heading angle (blue lines) are
compared with the generated speed and orientation references
(red lines); u1 and ψ1 correspond to the blue vehicle, u2 and
ψ2 correspond to the red vehicle, u3 and ψ3 correspond to the
green vehicle, u4 and ψ4 correspond to the magenta vehicle.
As introduced before, the surge speed and orientation tracking
by means of the dynamics’ controllers is achieved although
the presence of the oscillations in the reference signals (only
a tracking delay is introduced during the oscillatory regime).

A third experiment is focused on the overall behavior
analysis in presence of disturbances affecting the vehicles’
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Fig. 8. Robots’ speed and orientation profiles assumed during swarm aggregation combined with path-following guidance.
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Fig. 7. Robots’ motions during swarm aggregation combined with path-
following guidance.

motion. The same experiment previously described is exe-
cuted, adding two Gaussian noise signals to the orientation
ψi and surge speed ui of each vehicle. These disturbance
signals represent the combined effects of model uncertain-
ties, sensor noises and environmental disturbances affecting
the framework. In particular, the two disturbance processes
Nu(µu, σu) and Nψ(µψ, σψ) are characterized by a zero mean
value, µu = 0 and µψ = 0, and standard deviations equal to
σu = 0.05 and σψ = 0.01. Figure 9 reports the motion of the
vehicles and Figure 10 reports the speed and heading profiles,
noticing that the generated signals are clearly affected by the
disturbance, but the convergence to the required references is
still guaranteed.
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Fig. 9. Robots’ motions during swarm aggregation combined with path-
following guidance, with system affected by disturbance effects.

To stress the robustness of the proposed approach, an
explicit disturbance signal representing a North-directed sea
current of 0.25 m/s has been injected, in addition to the already
present general disturbance of the previous experiment, to the
vehicles’ kinematic model. Figure 11 shows the variation of
the motion evolution with respect to the previous experiment.
In particular it is possible to notice the virtual motion of the
formation centroid, affected by a reducing tracking error along
the path. The zeroing of such an error relies on the capabilities
of the dynamics’ controller of rejecting static errors. Thus dif-
ferent regulator schemes, at dynamical level, can be introduced
to overcome this issue. The speed and orientation behavior for
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Fig. 10. Robots’ speed and orientation profiles assumed during swarm aggregation combined with path-following guidance, with system affected by disturbance
effects.

this experiment are reported in Figure 12.
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Fig. 11. Robots’ motions during swarm aggregation combined with path-
following guidance, with system affected by disturbances and sea current.

In order to highlight and practically validating the conver-
gence of the combined approach from any initial configuration,
already guaranteed by the theoretical analysis, two further ex-
perimental results are reported, again affecting the simulation
execution with disturbance effects and constant sea current
as the previous simulations. The motion of the robots starting
from a parallel initial positioning is reported in Figure 13. The
evolution of robots’ motion from an aligned initial position
configuration is shown in Figure 14.
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Fig. 13. Robots’ motions starting from a parallel initial positioning.

A. Remarks on the collision avoidance issue

Unmanned Surface Vehicles are usually employed for explo-
ration, observation and sampling tasks; to achieve satisfactory
results during the execution of such tasks, “good” operating
conditions are needed. The term “good” basically refers to
environmental conditions characterized by moderate wind, sea
currents and waves, in such a way that the motion of the vehi-
cles is only marginally affected by the external disturbances.
Anyway, being the proposed collision avoidance solution not
formally proved, a statistical analysis based on a Monte Carlo
simulation set has been carried out in order to analyze the
practical collision avoidance implementation and evaluate the
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Fig. 12. Robots’ speed and orientation profiles assumed during swarm aggregation combined with path-following guidance, with system affected by disturbances
and sea current.
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Fig. 14. Robots’ motions starting from an aligned initial positioning.

functional limits of the adopted solution. With the aim of
obtaining an overall indicator of the system performance with
respect to the collision avoidance capability, the simulations
are focused on the detection of the number of inter-vehicles
collisions, when the motion of the vehicles is affected by an
external disturbance, i.e., sea conditions.
Each simulation is executed requiring the robots’ team to track
the same sinusoidal path (already defined for the previous
tests), affecting the robots’ positions with two separate distur-
bance signal: a first one, constant during the entire simulation,
representing a sea current; the second one, a randomly gener-
ated position error varying during the simulation, representing

random wave and wind effects. At the beginning of each
simulation a sea current setting is selected, randomly choosing
a direction in

[
0; π2

]
and the current intensity characterized

by a Gaussian distribution Nd(0, σd). During the simulation
the vehicles’ positions are perturbed by a random disturbance
characterized by the same Gaussian distribution Nd(0, σD).
During each simulation run, the number of collision is counted,
where a collision is intended when the condition d− 2η ≤ 0
is satisfied.
A number of 5 simulations sets have been executed, for
each set a different σd is selected, i.e. increasing more and
more the disturbance effect. For each set, a number of 1000
simulations is executed, collecting for each one the number of
collisions and then producing, at the end of the simulations
set, the statistics of average collision number µc and standard
deviation σc.
The results of the simulations are reported in Table I.
It has to be remarked that the disturbance effects considered

TABLE I
COLLISION AVOIDANCE STATISTICS

Set # σd Simulations µc σc

1 0.025 1000 0 0
2 0.08 1000 0 0
3 0.14 1000 0.1370 0.6298
4 0.2 1000 2.5990 2.9204
5 0.25 1000 8.8600 6.0326

in simulation number 2 already represent limit operating
conditions for vehicles’ exploitation. As shown in the table,
such a condition does not (statistically) influence the func-
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tionality of the adopted collision avoidance scheme. Thus
the practical collision avoidance is proved under reasonable
operating constraints.

X. CONCLUSIONS

In this paper, the integration of a swarm aggregation tech-
nique with a virtual target based path-following guidance con-
troller has been reported. The easiness of the integration itself,
given by the high modularity of both the swarm aggregation
and path-following algorithms, as well as the theoretically
proven feasibility of the techniques’ integration, make the
proposed approach appealing for practical application at sea.
A set of test results has demonstrated the validity of the
combined swarm-aggregation / path-following approach, also
highlighting the robustness with respect to system disturbances
and environmental effects (such as sea currents).
Future works are focused on the integration of connectivity
information within the Swarm / Path-Following framework,
with the aim of providing the capability of preventing the
communication graph disconnection, i.e. allowing the vehicles
to overcome the problems of connection blackouts or link
changes, as it happens in dynamic networks. In particular, the
aim is to extend the proposed approach to a general multi-
vehicle marine framework, where heterogeneous agents (i.e.
surface and underwater vehicles) can cooperate, keeping into
account the strict constraint given by underwater communica-
tions provided by the acoustic links that are characterized by
low bandwidth and reliability.
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