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Abstract

This paper proposes an asynchronous gossip framework where agents move
according to independent random walks over a location graph and interac-
tions may occur only when two agents share the same location. Our goal
is to investigate how average consensus may be achieved when agents’ mo-
tion occurs over a set of discrete locations with topological constraints. This
could be used to model the spreading of information across moving crowds
or the coordination of agents monitoring a discrete set of points of interest.
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1. Introduction

Over the last two decades, distributed algorithms have gained momentum
in the scientific community as they represent an effective tool for coordinating
multi-agent systems in different domains, ranging from for sensor networks [1,
2] to mobile robotic networks [3, 4].

An important classification of such algorithms arises from the nature of
the coordination, i.e., whether the coordination is global, dictated for in-
stance by availability of a common global clock or a common sense of time
(i.e., synchronous algorithms [5]), or the coordination is completely local
and pairwise, dictated for instance by the availability of a local (possibly di-
verse) clock for each agents (i.e., asynchronous algorithms [6]). Gossip-based
protocols are a representative example of asynchronous algorithms [7]. The
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major advantage of gossip approaches comes from the fact that they do not
require a global coordination, e.g., no common sense of time is required, and
their implementation is, in general, significantly more accessible compared
to synchronous protocols.

In this work, we consider a scenario where agents move according to in-
dependent random walks over a given location graph, where vertexes denote
locations and edges describe the existence of a connection between them.
Compared to classical gossip schemes, where the underlying interaction graph
is fully connected and pair-wise interactions occur over time according to
some probability distribution, in our setting the interaction graph is not de-
termined a priori, but it is the result of proximity-based local interactions
modeling the fact agents must necessarily be sharing the same location in or-
der to exchange information (i.e., the topology changes over time, depending
on the locations occupied by the agents).

In order to clarify the differences of the proposed approach with previous
gossip literature, let us consider the diffusion of news in the immediate after-
math of a terroristic attack. Traditional gossip would be suitable to model
a situation where individuals share information by means of cellphones, i.e.,
without proximity-constraints, while the proposed framework would be more
adequate to model how information spreads by word of mouth, i.e., with
proximity-constraints, as people escapes from the attack location and meets
other individuals that are unaware of the ongoing situation.

1.1. Related Work
We point out that gossip schemes have been widely investigated in the

literature [8, 9, 10, 7, 11, 2, 12]. Recent innovations in this field include,
among others, fault detection based on gossip [13], finite-time convergent gos-
siping [14], gossip-based distributed Kalman filtering [15] and gossip-based
distributed centroid and common reference frame estimation [3]. Interest-
ingly, works can be found at the state of the art which consider explicitly
the presence of topological constraints. Among the others, we mention [16]
and [17], where agents’ interaction is constrained according to the structure
of a given graph; [18], where interactions occur over a graph via multi-hop
communication; and [19] where finite-time consensus is achieved over ring
networks.
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1.2. Contribution
The main contributions of this work are as follows: (i) we characterize

the time-varying pairwise communication probabilities among the agents,
which are driven by independent random walks over the location graph; (ii)
we prove the convergence of the proposed gossip dynamics in expectation
(in terms of first moment and second moment) to the average of the initial
conditions of the agents.

1.3. Paper Outline
The rest of the paper is organized as follows. In Section 2 preliminary

definitions are collected and in Section 3 the problem statement is given and
the agents’ motion and communication behavior is characterized; in Section 4
the convergence to the average in first and second moments are given, while
in Sections 5 and 6 simulation results are given and conclusions are drawn,
respectively. Finally, we collect some technical results in the appendix.

2. Preliminaries

Notation: We denote vectors by boldface lowercase letters. The (i, j)-th
entry of a matrix A is denoted by A(i, j). We denote by In the n×n identity
matrix and by 1n a vector with n components, all equal to one. We use
ei to denote i-th vector in the canonical basis in Rn, i.e., a vector whose
entries are all zeros, except the i-th entry which is equal to one. Moreover,
we denote by Ker(A) the kernel of A and the eigenspace spanned by a vector
x ∈ Rn as span(x) = {y ∈ Rn |y = αx , α ∈ R} . We denote by N≥0 the set
of nonnegative integers. Finally, given a set X let 2X be its power set, i.e.,
the set of all possible subsets of X.

Paracontracting Matrices: An n × n matrix W is said to be non-
expansive [20] with respect to the Euclidean norm || · || if for all x ∈ Rn

||Wx|| ≤ ||x||, while it is said to be paracontracting [21] with respect to the
Euclidean norm || · || if Wx 6= x⇔ ||Wx|| < ||x||.

Remark 1. As noted in [20], a symmetric matrix is paracontracting with
respect to the Euclidean norm if and only if all its eigenvalues lie in the
interval (−1, 1].

We now review a theorem [20] that characterizes the convergence of the
infinite product of matrices.
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Theorem 1 (Theorem 3.1, [20]). Let us define S = {Wj | j ∈ J} as a set
of possibly infinite n × n real matrices indexed by the index set J ⊆ N≥0,
and let {Wk}∞k=0 be a sequence of matrices selected from S and consider the
system x(k + 1) = Wk x(k), with k ∈ N≥0. Suppose that all Wj ∈ S are
non-expansive with respect to the same vector norm || · || and there exists a
subsequence {Wki}∞i=0 of the sequence {Wk}∞k=0 such that limi→∞Wki = H,
where H satisfies the following properties: (i) H is paracontracting with re-
spect to ‖ · ‖; (ii) Ker(I −H) ⊆ ∩j∈J Ker(I −Wj). Then for any x(0) ∈ Rn

the sequence {x(k)}∞k=0 is convergent and it holds

lim
i→∞

x(i) ∈ Ker(I −H) ⊆
⋂
j∈J

Ker(I −Wj).

Graph Theory: Let G = {V,E} denote a graph with a finite number
m of nodes vi ∈ V with i ∈ {1, . . . ,m} and edges (vi, vj) ∈ E ⊂ V × V from
node vi to node vj. A graph is said to be undirected if (vi, vj) ∈ E whenever
(vj, vi) ∈ E, and it is said to be directed otherwise. In the following we will
consider undirected graphs. Let the neighborhood Ni(G) of a node vi over an
undirected graph G = {V,E} be the set Ni(G) = {vj | (vi, vj) ∈ E}. Let the
degree di of a node vi be the number of its incident edges, i.e., di = |Ni(G)|.
A path over a graph G = {V,E}, starting from a node vi ∈ V and ending in
a node vj ∈ V , is a subset of links in E that connect vi and vj; the length
of the path is the cardinality of such set. A minimum path that connects
vi and vj is the path from vi to vj of minimum length. The diameter δ of
a graph G is the maximum length among the minimum paths that connect
each possible pair of distinct nodes vi, vj ∈ V .
An undirected graph is connected if for each pair of nodes vi, vj there is a path
over G that connects them. Let an m×m symmetric matrix W having the
same structure as an undirected graph G = {V,E} with m nodes, i.e., such
that (vi, vj) ∈ E impliesWij 6= 0; it can be shown thatW is irreducible if and
only if the corresponding undirected graph G is connected. Let the adjacency
matrix of a graph G be an m×m matrix A with the same structure as G and
Aij ∈ {0, 1}, i.e., Aij = 1 if (vi, vj) ∈ E and Aij = 0, otherwise. Moreover,
let the degree matrix be the m×m diagonal matrix D whose diagonal entries
are Dii = di, where di is the degree of node vi over G.

Random Walks: A random walk over a graph G = {V,E} is a path
{v(0), v(1), . . . , v(k), . . .} describing the uniformly random motion of an
agent of the graph G with respect to time, where v(k) = vi denotes the
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node vi occupied by the agent at time k. Briefly, in a random walk an agent
moves at time k from a node v(k) to a node v(k+1) ∈ Nv(k)(G) by selecting a
neighboring location with uniform random probability, i.e., with a probability
equal to 1/dv(k). The aforementioned process can be conveniently described
as a Markov chain [22, 23], by considering a matrix M of transition proba-
bilities defined as M(i, j) = 1/di if (vi, vj) ∈ E, and M(i, j) = 0, otherwise.
It can be easily shown that M = D−1A. The Markov chain representing the
random walk can be expressed as p(k+1) =MTp(k) where p(k) ∈ Rm is the
probability distribution at time k, i.e., pi(k) is the probability that the node
vi is visited at time k. Note that p(k) has nonnegative entries and satisfies
1T

m p(k) = 1.

Clock
Ticks

Select
agent j

with fixed
probability

pij

Compute
pairwise
average of
the states

Idle

Figure 1: Flow chart representing one iteration within the gossip framework in [7], from
the point of view of agent i.

Randomized Gossip: Let us briefly review the randomized gossip frame-
work proposed in [7]; the logical steps that characterize each iteration of such
an algorithm are reported in Figure 1. Specifically, let us consider a set of
n agents {1, . . . , n}, each holding a piece of information or value xi(0) ∈ R.
Each agent has a clock which ticks at the times of a rate 1 Poisson pro-
cess, independent across the agents and over time. In this way, although
the agents’ clock tick in an asynchronous way, the iterator k can be used
to denote the k-th ticking. Notice that the probability that the clock of an
agent i ticks at time k is equal to 1/ n. When the clock of an agent i ticks at
time k, the agent selects another agent j ∈ {1, . . . , n}\{i} with a probability
Pij. Then, both agents set their state equal to the average of their current
states, according to x(k + 1) = W (k)x(k), where x(k) ∈ Rn is the stacked
vector of agents’ states at iteration k and matrix W (k) is a random matrix.
In particular, let us define Wij as the pairwise interaction matrix given by

Wij = In −
1

2
(ei − ej)(ei − ej)

T , (1)
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with ei being the i-th vector in the canonical basis in Rn; the random ma-
trix W (k) is such that W (k) = Wij with probability Pij/n. Let us denote
with xave = 1

n

∑n
i=1 xi(0) the average of the initial conditions and let us

define the error y(k) between the state of the agents at iteration k and
the average of the initial conditions as y(k) = x(k)− xave1n. Briefly, in [7],
the authors demonstrate that the first order moment of the agents’ state is
E[x(k)] = W

k
x(0), whereW = 1

n

∑n
i=1

∑n
j=1 PijWij is a time invariant, dou-

bly stochastic and irreducible dynamic matrix. Moreover, they prove that
E[y(k)] converges to zero, thus E[x(k)] converges to the average of the initial
conditions of the agents. Furthermore, the authors demonstrate that the sec-
ond order moment E[y(k)Ty(k)] of y(k) converges to zero, in that it holds
E[y(k)Ty(k)] ≤ λ2

(
E[W TW ]

)
‖y(0)‖2, where, since all matrices W (k) are

identically distributed, W represents any of the matrices W (k), while λ2(·)
is the eigenvalue with second largest magnitude.

Clock Ticks

Select
agent j
at same
location
with

uniform
probability

Compute
pairwise
average of
the states

Select
neighboring
location
with

uniform
probability

Move to
selected
location

Idle

Figure 2: Flow chart representing one iteration within the proposed gossip framework,
from the point of view of agent i.

3. Problem Statement and Agents’ Behavior

Consider a set of m locations `1, . . . , `m and a connected and undirected
location graph G` = {V`, E`}, having the locations as nodes and featuring a
link (`i, `j) ∈ E` if locations `i and `j are connected through a passage. We
consider a set of n agents, each holding a value xi(0) ∈ R. We follow the
theoretical clock ticking framework in [7]. However, differently from [7], the
agents move over G` according to independent random walks; when the clock
of an agent i ticks at the k-th iteration, the agent selects an agent j occupying
its same location in a uniformly random way and agents i and j performs a
standard gossip step. Then, agent i concludes its actions at iteration k by
moving to a neighboring location, which is randomly selected with uniform
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probability.The different phases constituting an iteration of the proposed
gossip process are reported in Figure 2. Our objective is to demonstrate the
convergence of first and second moment of the proposed gossip scheme to
the average of the initial conditions. To this end, we now characterize the
agents’ motion and communication within the proposed setting.

3.1. Agents’ Motion
An agent i, after attempting to communicate, independently selects a

neighboring location with uniform probability and moves to the new location,
thus executing an iteration of a random walk over G`. Let p(i)(k) ∈ Rm be
the probability distribution for the position of agent i over the m locations
in V` at the k-th iteration. The motion of the i-th agent is represented by

p(i)(k + 1) = Hp(i)(k), (2)

where
H =

n−1
n

Im +
1

n
MT and M = D−1A.

Notice that the clock of agent i ticks with probability 1/ n [7], and when it
does, the agent moves according to a classical random walk; in particular,
H(i, i) = (n−1)/n represents the probability that the clock of the the i-th
agent does not tick at iteration k. In other words, matrix H corresponds
to the identity matrix (i.e., no motion) with probability (n − 1)/n and to
MT (i.e., random walk) with probability 1/n. Let us define ηij(k) as the
agents’ meeting probability, i.e., the probability that agent i and agent j are
in the same location at iteration k. We now characterize the structure of the
meeting probability ηij(k) at each time k.

Proposition 1. Consider agents i and j moving according to Eq. (2). For
all k ≥ 0 it holds

ηij(k) =

{
p(i)(0)T (Hk)T Hk p(j)(0), if i 6= j;

1, otherwise.
(3)

Proof Let p(ij)q (k) be the probability that agents i and j with i 6= j are in `q at
iteration k. Since each random walk is independent, it holds p(ij)q (k) = p

(i)
q (k)p

(j)
q (k),,

while for i = j it holds p(ii)q (k) = p
(i)
q (k). The meeting probability ηij(k) is
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given by the sum of the p(ij)q (k) terms over all locations `q, i.e.,

ηij(k) =

{
p(i)(k)Tp(j)(k), if i 6= j,

1T
m p(j)(k), otherwise.

For i 6= j we have that

p(i)(k)Tp(j)(k) = p(i)(0)T (Hk)T Hk p(j)(0);

for i = j, by definition, it holds 1T
m p(j)(k) = 1. The proof is complete. �

We now show that the meeting probability ηij(k) for any couple of agents
i and j becomes greater than zero after at most δ steps, where δ is the
diameter of G`.

Theorem 2. For all k ≥ δ and i 6= j it holds ηij(k) > 0.

Proof From Proposition 1, ηij(k) is the inner product between p(i)(k) and
p(j)(k). Since all entries of p(i)(k) and p(j)(k) are nonnegative by definition,
a sufficient condition for their inner product to be positive is that each entry
of the two vectors is positive. From Eq. (2), it follows that if p(i)q (k) > 0,
then p(i)h (k+1) > 0 for all `h ∈ Nq(G`). Note that n−1

n Im and 1
nM

T commute
with respect to product, hence the Binomial Theorem applies and it holds

Hk =
m∑

h=0

(
k

h

)(
n−1
n

)k−n(
1

n

)h

(MT )h.

Therefore, since M and p(i)(0) have just nonnegative entries, it follows that
Hk p(i)(0) has all positive entries whenever (MT )kp(i)(0) has all positive en-
tries. The worst case scenario corresponds to an initial probability distribu-
tion for which only one location has probability one; this situation requires
the longest propagation time to reach any other node. Since the diameter δ
of G` indicates the length of such longest shortest path, then all entries of
p(i)(k) will be positive when k ≥ δ. �

3.2. Agents’ Communication
Let x(k) ∈ Rn be the stacked vector of agents’ states at iteration k, and

let us define ωij(k) as the communication probability for agents i and j at
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iteration k, i.e., the probability that agent i communicates1 with agent j at
iteration k. The agents update their states according to

x(k + 1) = W (k)x(k) (4)

whereW (k) is a random matrix. Specifically, with a time-varying probability
ωij(k), which will be characterized in the following, W (k) = Wij, where

Wij = In −
1

2
(ei − ej)(ei − ej)

T

is the pairwise interaction matrix and ei is the i-th vector in the canonical
basis in Rn.

We now characterize the communication probability ωij(k). To this end
we first provide the following supporting lemma.

Lemma 1. Let Iij denote the set of nodes that are at the same location as
the i-th and j-th agent at time k, and let us denote by Jij a subset of Iij,
i.e., Jij ⊆ Iij. The conditional probability θij(k) that agent i selects2 agent j
at time k given the fact that: i) the clock of the i-th agent ticks at iteration
k; and ii) both agents i and j are at the same location at time k is given by

θij(k) =
∑
Jij⊆Iij

∏
h∈Jij ηih(k)

∏
h∈J ij

(1− ηih(k))
|Jij|+ |{i} ∪ {j}|

(5)

Proof We define θ̂(k,Jij) as the the conditional probability that the agents
indexed by Jij are at the same location as agent i and agent j while each other
agent is not, given the fact that agent i and agent j are at the same location.
Such a probability corresponds to the product of the meeting probabilities
for the agents indexed by Jij and of the complement to one of the meeting
probabilities for the agents indexed by J ij, i.e.,

θ̂(k,Jij) =
∏
h∈Jij

ηih(k)
∏

h∈J ij

(1− ηih(k)).

1Notice that we explicitly model by ωii(k) the probability that the clock of agent i
ticks, but no other agent is selected for communication.

2Notice that we allow i to select itself, and in this case no communication occurs.
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Moreover, the conditional probability θ̃ij(k,Jij) that agent i selects agent j
uniformly at random, given the occurrence of the above event is

θ̃ij(k,Jij) =
1

|Jij|+ |{i} ∪ {j}|
.

Therefore, the probability θ∗ij(k,Jij) that the agents indexed by Jij are at
the same location as agent i and agent j (while all agents indexed by J ij are
not) and that agent j is selected at iteration k corresponds to

θ∗ij(k,Jij) = θ̂(k, J∗ij) θ̃ij(k,Jij).

The probability θij(k) is the sum of the probabilities θ∗ij(k,Jij) for all possible
Jij ⊆ Iij; in other words

θij(k) =
∑
Jij⊆Iij

θ∗i,j(k,Jij),

which is the thesis. �

Theorem 3 (Communication Probability). For all k ≥ 0 the commu-
nication probability ωij(k) is given by

ωij(k) =
1

n
ηij(k)θij(k) (6)

Proof Let us point out that ωij(k) is the joint probability of two events
occurring at iteration k: (i) the clock of the i-th agent ticks and (ii) agent i
selects agent j for communication. Event (i) is independent and, as noted in
[7], occurs with probability equal to 1/ n, independently on i and k. Event
(ii) is dependent on event (i), hence we consider the conditional probability
ω̂ij(k) that agent i selects agent j at iteration k, given the occurrence of
event (i); overall, it can be noted that, it holds ωij(k) = ω̂ij(k)/n. Note that
event (ii) can be further decomposed in two events occurring at iteration k:
(ii.a) agent j is at the same location as agent i and (ii.b) agent j is chosen
uniformly at random among the agents that are at the same location as
agent i. Event (ii.a) is independent on (ii.b), and its probability corresponds
to the meeting probability ηij(k). Conversely, event (ii.b) is conditional to
the fact that agent i and agent j are at the same node in G`, and as shown
in Lemma 1 corresponds to θij(k). Hence, it holds ω̂ij(k) = ηij(k)θij(k). The
proof follows. �
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Remark 2. According to the above Theorem, ωij(k) is the probability that
agent i communicates with agent j at iteration k. The terms ωij(k) capture
all possible cases for the communication of two agents, including the case
i = j which models the fact that the clock of agent i ticks, but no other agent
is selected for communication. Hence, by construction, it holds

n∑
i=1

n∑
j=1

ωij(k) = 1, ∀k ≥ 0.

Corollary 1. For all iterations k ≥ δ, where δ is the diameter of G` it holds
ωij(k) > 0, with i, j ∈ {1, . . . , n}.

4. Convergence Analysis

In this section, we prove the convergence to zero of the error y(k) defined
as

y(k) = x(k)− xave1n, (7)

where

xave =
1

n

n∑
i=1

xi(0).

Specifically, we prove convergence with respect to the terms of the first and
second moments; to this end, we rely on the technical results provided in the
appendix, as well as on the following support lemma.

Lemma 2. The error dynamics evolves according to

y(k + 1) = W (k)y(k). (8)

Proof The result follows from [7]. Specifically, since by construction W (k)
is doubly stochastic, it holds W (k)1n = 1n; hence, we have that

y(k + 1) = x(k + 1)− xave1n = W (k)x(k)−W (k)xave1n = W (k)y(k).

The thesis follows. �
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4.1. Convergence of First Moment
We now prove convergence of y(k) to zero in expectation.

Theorem 4. Consider y(k) defined as in (7), evolving according to (8).
Then, for all k ≥ 0, it holds

lim
k→∞
{E [y(k)]} = 0n. (9)

Proof We observe that, by Lemma 5, E[y(k)] is in the form of Eq. (12) and,
by Lemma 3, it is paracontracting; hence, point (i) in Theorem 1 is satisfied.
Moreover, by Corollary 1, all ωij(k) > 0 for k ≥ δ. Therefore, for k ≥ δ each
E[W (k)] has only positive entries and thus it is irreducible. Since E[W (k)] is
doubly stochastic by construction, by the Perron-Frobenius Theorem, it fol-
lows that λ1(E[W (k)]) = 1, while |λi(E[W (k)])| < 1 for i = 2, . . . , n, where
we denote the i-th largest eigenvalue of E[W (k)] by λi(E[W (k)]). As a
consequence, it holds

Ker(I −E[W (k)]) = span(1n), ∀k ≥ δ.

As for the case k ≤ δ, let us recall that according to Lemma 3, E[W (k)] is a
doubly stochastic but not necessarily irreducible matrix, for which it holds

(I −E[W (k)])α1n = α (1n −E[W (k)]1n) = 0n.

Since this holds true for any α ∈ R it follows that, by construction,

span(1n) ⊆ Ker(I −E[W (k)]).

Hence, also point (ii) of Theorem 1 is satisfied. Therefore, setting

H = lim
k→∞

E[W (k)],

we have that it holds

lim
k→∞

E[y(k)] ∈
⋂
j∈J

Ker(I −E[W (k)]) = span(1n).

We now show that it must hold α = 0. By Theorem 1, we have that

lim
k→∞

E[y(k)] = α1n,
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with α ∈ R. Since, by Lemma 4, it holds

1T
n y(k) = 0,

it follows that
E[1T

n y(k)] = 0.

Finally, by definition, it holds

E[1T
n y(k)] = 1T

nE[y(k)];

hence, we have that

lim
k→∞

1T
nE[y(k)] = α 1T

n1n = 0.

Thus, it must be α = 0. �

4.2. Convergence of Second Moment
We now prove the convergence of E

[
y(k)Ty(k)

]
to zero as k approaches

infinity.

Theorem 5. Consider y(k) defined as in (7), evolving according to (8).
Then, it holds

lim
k→∞
{E
[
y(k)Ty(k)

]
} = 0. (10)

Proof Let us characterize E[y(k)Ty(k)|y(k − 1)]. It holds

E[y(k)Ty(k)|y(k − 1)] = y(k − 1)TE[W (k − 1)TW (k − 1)]y(k − 1)

= y(k − 1)TE[W (k − 1)]y(k − 1),

where the last equality follows from Proposition 2. At this point, since
E[W (k − 1)] is symmetric by construction, we express

E[W (k − 1)] =
n∑

i=1

λi(k − 1)qi(k − 1)qT
i (k − 1),

where qi(k) is the eigenvector associated to the i-th largest eigenvalue λi(k) of
E[W (k)]. As shown in Theorem 4, it holds λ1(k − 1) = 1 with q1(k − 1) = 1n

and |λi(k − 1)| < 1 for all i ≥ 2. By Lemma 4, for all k, it holds 1T
n y(k) = 0;

therefore, we have that

E[y(k)Ty(k)|y(k − 1)] = y(k − 1)TQ(k − 1)y(k − 1),
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with

Q(k − 1) =
n∑

i=2

λi(k − 1)qi(k − 1)qT
i (k − 1).

Notice that, by construction, Q(k − 1) is symmetric for all k; moreover, by
construction, it holds E[zTz|g] = |E[zTz|g]| for all z, g ∈ Rn. Therefore,
we have that

E[y(k)Ty(k)|y(k − 1)] =
∣∣E[y(k)Ty(k)|y(k − 1)]

∣∣
=
∣∣y(k − 1)TQ(k − 1)y(k − 1)

∣∣
= |< y(k − 1), Q(k − 1)y(k − 1) >|
≤ ‖y(k − 1)‖ ‖Q(k − 1)y(k − 1)‖
≤ ‖Q(k − 1)‖ ‖y(k − 1)‖2

≤ |λ2(k − 1)|‖y(k − 1)‖2

= |λ2(k − 1)|y(k − 1)Ty(k − 1),

where we used the Cauchy-Schwarz inequality, i.e., | < x,y > | ≤ ‖x‖ ‖y‖.
By resorting to the Law of Total Expectation, we obtain

E
[
y(k)Ty(k)

]
= E

[
E
[
y(k)Ty(k)|y(k − 1)

]]
≤ E

[
|λ2(k − 1)|y(k − 1)Ty(k − 1)

]
= |λ2(k − 1)|E[y(k − 1)Ty(k − 1)].

Thus, iterating for all k, we have that

E[y(k)Ty(k)] ≤
k−1∏
h=0

|λ2(h)|E[y(0)Ty(0)] =
k−1∏
h=0

|λ2(h)|‖y(0)‖2 (11)

where the last equality holds true since y(0) is deterministic by definition.
By construction, it holds |λ2(k)| ≤ 1 for all k ≥ 0, while, by Corollary 1,
|λ2(k)| < 1, for k ≥ δ. The proof follows. �

5. Simulations

In this section we provide an example to numerically demonstrate the
convergence of the proposed gossip scheme. Figure (3) describes an instance
of the proposed framework where a location graph G` with m = 40 locations,
161 links and n = 10 agents over it is considered, as shown in Figure (3a),
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Figure 3: Figure (3a) shows the location graph where nodes filled in black denotes the
agents’ initial locations. Figure (3b) depicts the error y(k) evolution for a particular
realization. Figures (3c) and (3d) illustrate a comparison of the theoretical and empirical
first moment E[y(k)] and second moment E[y(k)Ty(k)], respectively, where the empirical
moments are obtained by computing an approximation of the expected dynamical matrix
E[W (k)] over 500 instances

where black nodes denote locations occupied by the agents at time k = 0.
Figure (3b) depicts the evolution of the error dynamics y(k) for a particular
instance, where it can be noticed that y(k) converges to zero according to
Theorems 4 and 5. In this regard, Figures (3c) and (3d) describe the empiric
and theoretical convergence of the first and second moments, respectively;
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where the empiric moments are obtained by computing an approximation
of the expected dynamical matrix E[W (k)] over 500 instances. Notably,
Figure (3d) also numerically demonstrates that the expression in Eq. (11),
given in Theorem 5, represents an upper-bound on the second moment.

6. Conclusions

In this work we proposed an asynchronous framework for distributed av-
eraging where each agent moves according to independent random walks over
a location graph and pairwise interactions may occur only when two agents
share a common location. A theoretical analysis to demonstrate the con-
vergence properties of the proposed gossip scheme has been provided, along
with numerical simulations to corroborate the theoretical findings. Future
work will be mainly focused on two directions: i) characterizing the rela-
tion between the topology of the location graph, the initial distribution of
the agents’ location and the convergence rate of the gossip process; ii) con-
sidering a scenario where the walk of the agents is influenced by the gossip
process, e.g., in order to implement dynamic patrolling schemes based on
the information perceived by the agents during their visit of the different
locations.

Appendix

Lemma 3. Let W (k) a random matrix such that W (k) = Wij with probabil-
ity ωij(k), where Wij is the pairwise interaction matrix and ωij(k) is defined
in Eq (6). Then, the expected matrix E[W (k)] is paracontracting for all
iterations k.

Proof To prove the lemma, we notice that by definition the expected value
of W (k) at iteration k can be obtained according to the communication
probability ωij(k) as

E[W (k)] =
n∑

i=1

n∑
j=1

ωij(k)Wij.

In particular, it holds

E[W (k)](i, j) =


ωij(k) + ωji(k)

2
, if i 6= j,

1−
∑n

h=1, h 6=i

ωih(k) + ωhi(k)

2
, otherwise.
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Since ωij(k) ≥ 0 and, by construction, it holds
∑n

i=1

∑n
j=1 ωij(k) = 1, we con-

clude that E[W (k)](i, j) ≥ 0, for all i, j and the sum over each row/column
is equal to one. Moreover, E[W (k)] is symmetric and therefore it has real
eigenvalues λi(E[W (k)]). Finally, from the Gershgorin Circle Theorem, if
follows that all λi(E[W (k)]) ∈ [0, 1]. Therefore, as discussed in Section 2,
matrix E[W (k)] is paracontracting. �

Lemma 4. Consider y(k) defined as in (7), evolving according to (8). Then,
for all k ≥ 0, it holds 1T

n y(k) = 0.

Proof We notice that W (k) is doubly stochastic at each iteration k, as
pointed out in Lemma 2. Therefore it holds 1T

nW (k) = 1T
n , for all k = 0, 1, . . .

and

1T
n y(k) = 1T

n

k−1∏
h=0

W (h)y(0) = 1T
nW (k − 1)

k−2∏
h=0

W (h)y(0);

by iterating for all h = 1, . . . , k, we get 1T
n y(k) = 1T

nW (0)y(0) = 1T
ny(0).

At this point, since we have that y(0) = x(0)− xave1n, we conclude that it
holds 1T

ny(k) = 1T
nx(0)− xave1T

n1n = 0. The proof is complete. �

Lemma 5. Consider y(k) defined as in (7), evolving according to (8). Then,
for all k ≥ 0, it holds

E[y(k)] =
k−1∏
h=0

E[W (h)]y(0). (12)

Proof We point out that, by construction, it holds

E[y(k)|y(k − 1)] =
n∑

i=1

n∑
j=1

ωij(k − 1)Wijy(k − 1) = E [W (k − 1)]y(k − 1).

By the Law of Total Expectation [24], we conclude that it holds

E[y(k)] = E[E[y(k)|y(k − 1)]] = E[E[W (k − 1)]y(k − 1)]

= E[W (k − 1)]E[y(k − 1)].

At this point, we observe that it holds

E[y(k)] = E[W (k− 1)]E[y(k− 1)] = E[W (k− 1)]E[W (k− 2)]E[y(k− 2)];
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by iterating this reasoning for all k we conclude that it holds

E[y(k)] =
k−1∏
h=0

E[W (h)]E[y(0)].

Being y(0) deterministic, it holds E[y(0)] = y(0). The proof is complete. �

Proposition 2. Consider W (k) defined as in Lemma 3, then, for all k ≥ 0
it holds

E[W (k)TW (k)] = E[W (k)] (13)

Proof By construction, it holds

E[W (k)TW (k)] =
n∑

i=1

n∑
j=1

ωij(k)W
T
ijWij. (14)

Moreover, from the definition of Wij, it follows that

W T
ijWij = W 2

ij = Wij. (15)

By plugging Eq. (15) into Eq. (14), we get

E[W (k)TW (k)] =
n∑

i=1

n∑
j=1

ωij(k)Wij = E[W (k)].

The proof is complete. �
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