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Abstract—

Wireless Sensor Networks (WSN) are at the forefront of emerg-
ing technologies due to the recent advances in Micro-Electro-
Mechanical Systems (MEMS). The inherent multi-disciplinary
nature of WSN attracted scientists coming from different areas
stemming from networking to robotics. WSN are considered to be
unattended systems with applications ranging from environmental
sensing, structural monitoring, and industrial process control to
emergency response and mobile target tracking. Most of these
applications require basic services such as self-localization or
time-synchronization. The distributed nature and the limited hard-
ware capabilities of WSN challenge the development of effective
applications. In this paper the Self- Localization problem for
Sensor Network is addressed. A distributed formulation based
on the Information version of the Kalman Filter is provided.
Distribution is achieved by neglecting any coupling factor in
the system and assuming an independent reduced-order filter
running on-board each node. The formulation is extended by an
interlacement technique. It aims to alleviate the error introduced
by neglecting the cross-correlation terms by “suitably” increasing
the noise covariance matrices. Real experiments involving MICAz
Mote platforms produced by Crossbows along with simulations
have been carried out to validate the effectiveness of the proposed
Self-Localization technique.

Index Terms— Sensor Networks, Distributed Applications, Dis-
tributed Network

I. THE SELF-LOCALIZATION PROBLEM IN SENSOR NETWORKS

A sensor network consists of a collection of nodes deployed
in an environment that cooperate to perform a task. Each node,
which is equipped with a radio transceiver, a micro-controller
and a set of sensors, shares data to reach the common objec-
tive. Sensor networks provide a framework in which, exploiting
the collaborative processing capabilities, several problems can
be faced and solved in a new way. However, it comes along
with several challenges such as limited processing, storage and
communication capabilities as well as limited energy supply and
bandwidth. Performing a partial computation locally on each
node, and exploiting inter-node cooperation, is the ideal way
to use sensor networks. Unfortunately, this modus-operandi is
highly constrained by the reduced hardware capabilities as well as
by the limited energy resources that makes communication very
expensive in terms of life-time for a node. As a consequence,
these constraints must be taken into account when developing
algorithms able to operate in a distributed fashion.

Sensor networks can be of interest to different areas of ap-
plication, ranging from environmental monitoring [9], [41], civil
infrastructures [23], [27], medical care [38], [32] to home and
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office applications [39], [25]. In each field, the deployment of a
sensor network has provided interesting advantages. For instance,
in the context of environmental monitor the introduction of a
sensor network made it possible to keep environments intrinsically
threatening for human beings [41] under surveillance, or in the
context of medical care it made it possible to remotely monitor
the health condition of patients by continuously extracting clinical
relevant information [32].

However, in order to build these application, some basic
services, such as time synchronization or nodes localization, are
generally required. In fact, basic middle ware services, such
as routing, often rely on location information, e.g., geographic
routing [5], [40], [24]. Specifically, the localization problem in
Sensor Networks consists of finding out the locations of nodes in
regards to any topology or metric of interest. This problem turns
out to be difficult to solve. In fact in [21], [14] it was proven
that a sufficient condition for a sensor network to be localizable
cannot be easily identified. This holds even when considering
the availability of perfect measurements. Further, several analyses
showed that having reliable ranging information is fairly practical
[42], [44], [2], especially when using the received signal strength
indication (RSSI).

In this paper a distributed formulation based on the Information
version of the Kalman Filter is provided to deal with the self
localization problem in sensor networks. Distribution is achieved
by neglecting any coupling factor in the system and assuming
an independent reduced-order filter running on-board each node.
The error introduced by this assumption is then mitigated by
increasing the noise covariance matrices. This formulation is
particularly convenient in all those scenarios where the dimension
of the state space is lower than the dimension of the observations.
Indeed, this is the case of the proposed sensor network scenario,
where the dimension of the state space for each node is equal to
two, while the number of the observations is strictly related to
the number of nodes deployed into the environment.

The rest of the paper is organized as follows. In Sec. II the
state of the art for the localization problem in sensor networks is
given. In Sec. III some theoretical insights about the estimation
problem in a probabilistic framework are provided. In Sec. IV
the interlacement technique is described. In Sec. V the sensor
network scenario exploited in this work is detailed. In Sec. VI the
formulation of the information filter for the adopted scenario is
proposed. In Sec. VII the performance analysis is depicted, while
in Sec. VIII the experimental results are described. In Sec. IX the
analysis of the computational complexity is detailed. Finally, in
Sec. X conclusions are drawn.

II. STATE OF THE ART

A taxonomy of localization algorithms for sensor networks can
be drawn according to the computational organization, i.e., cen-
tralized and distributed, to the mechanism adopted for estimating
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location, i.e., range-based or range free, and finally in regards to
the availability of anchors nodes, i.e. anchor-based or anchor-free.

Centralized algorithms exploit a central computer to perform all
the complex computations using information gathered by nodes
[12], [36], [6]. Distributed algorithms dispense the computation
over the network, allowing each node to perform locally and
compensating for the lack of global knowledge through an inten-
sive collaborative processing [28], [11], [10]. Both schemes offer
advantages and drawbacks. Centralized algorithms provide inter-
esting performance but they lack in scalability and robustness.
Distributed algorithms provide high robustness and scalability but
the development of effective collaborative processing algorithms
is challenging.

Range-based algorithms exploit point-to-point distances or
angle estimates in order to perform the localization task [33],
[37], [30]. Range-free algorithms do not make any assumption
about the availability or reliability of this information [20], [26],
[44]. Although range-free approaches are appealing as a cost-
effective alternative to more expensive range-based approaches,
their performance may lack in accuracy.

Anchor-based algorithms rely on the availability of location
information for some special nodes in order to localize the
network [15], [35]. Anchor-free methods determine the geometry
of the network simply by exploiting local interaction among
nodes [34], [45]. Anchor-based algorithms have the advantage
of directly localizing nodes within a global reference frame, but
their accuracy is affected by the number of anchor nodes and
their distribution in the sensor field [7]. Conversely, anchor-free
methods scale better and do not required expensive hardware,
although only relative location estimates can be provided.

Centralized algorithms represent the first attempt to solve the
localization problem in sensor networks. In [12], the authors
propose the semi-definite programming approach (SDP) to solve
the localization problem. The key idea is to model geometric
constraints between nodes as linear matrix inequalities (LMIs),
then use the semi-definite programming theory to solve it. The
result is a bounding region for each node, representing feasible
locations where nodes are supposed to be. Although using a set
of convex constraints in order to estimate the position of a node
is very elegant, it turns out to be inaccurate as constraints do
not use precise data range. Moreover, the algorithm provides
a good estimation only when having anchors densely deployed
on the boundary of the sensor network, a condition that can
not always be guaranteed. The SDP approach is extended to
deal with noisy distance measurements by taking advantage of
an additional technique to mitigate inaccuracies [3]. In fact, the
solution provided by the SDP, though not accurate, represents
by the authors a good starting point for a gradient-descent
method. Furthermore, numerical results show that by means of
this improvement it is possible to obtain a solution very close
to the optimal one. However, the distributed formulation is the
result of a clusterization and a local execution of the algorithm
within each subset. Therefore, the computational complexity is
merely mitigated reducing the number of nodes but the approach
still remains almost centralized. In [36], the authors propose an
algorithm that uses connectivity information, i.e., which nodes are
within the communication range of which others, to derive the
locations of the nodes in the network. This algorithm is based on
multidimensional scaling (MDS), a set of data analysis techniques
that display the structure of distance-like data as a geometrical

picture [4]. It can be broken down into three steps. Starting with
the given network connectivity information, an all-pairs shortest-
path algorithm is run to roughly estimate the distance between
each possible pair of nodes. After, the multidimensional-scaling is
applied over these data to derive node locations. Finally, location
estimates are normalized with respect to nodes whose position is
known.

Distributed algorithms better fit the inherent collaborative
nature of sensor networks. In [28], the authors developed an
algorithm focused on providing more robust local maps. The idea
is to split the problem into a sub-set of smaller regions in which
the localization is performed taking advantage of the probabilistic
notion of robust quadrilaterals. A robust quad is a set of four
nodes fully-connected by distance measurements and well-spaced
in such a way that no ambiguity can arise, even when in the
presence of noise. The algorithm merges the sub-regions using a
coordinate system registration procedure. Such a procedure maps
local reference systems into a global one providing the best fitting
matrix when in presence of a set of common nodes. An optional
optimization step can be executed in order to refine the local
map first. The weakness of this approach, as pointed out by the
same authors, is that under conditions of low node connectivity
or high measurement noise, the algorithm may be able to localize
only a reduced number of nodes. In [10], the authors propose an
approach where localization is performed by exploiting clustering
information. Starting from locally-aware anchors, an initial set of
calibrated nodes is built. This set is then expanded to include
iteratively all the cluster-heads, i.e., the representative node for
the cluster. Due to the iterative nature of this approach a refining
step is required in order to provide reliable location estimates.
Once the cluster-heads have been fully localized, the remaining
follower nodes, i.e., non-cluster-head nodes, can be localized.

Range-free algorithms instead may offer an alternative anytime
distance-information are not available, due to stringent hardware
limitations. In [20], a range-free localization algorithm called
APIT is proposed. In this work, the environment is first isolated
into triangular regions defined by beacons: localization is achieved
by checking whether a node is inside or outside of these regions.
Combinations of anchor positions can be used to reduce the
diameter of the estimated area. Although an interesting insight
on how localization error affects a variety of location-dependent
applications such as geographical routing or target tracking is
provided, an impractical number of beacons might be required
to achieve satisfactory performances. In [44], a sequence-based
RF localization algorithm called Ecolocation is proposed. The
key idea is to determine the location of unknown nodes by
examining the ordered sequence of received signal strength (RSS)
measurements taken at multiple reference nodes. The authors
propose a constraint-based approach that provides for robust
location decoding even in the presence of random RSS fluctu-
ations due to multi-path fading and shadowing. However, the
algorithm performance is heavily conditioned by the number of
available reference nodes. In [8], the authors propose a RF-based
distributed localization method where location are estimated by
simply averaging the positions of all the anchors it is connected to.
Obviously, the accuracy of the estimation is strictly related to the
density of anchors deployed in the environment and the density
required to obtain an acceptable estimation is fairly practical.

Anchor-free algorithms may finally represent an alternative
solution in case prior knowledge about location are not available
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and an estimation in regards to a global reference frame is not
required. In [34], the authors propose the Anchor-Free Localiza-
tion algorithm (AFL), an algorithm where all nodes concurrently
calculate and refine their coordinate information. The key idea
is the introduction of fold-freedom: a fold-free embedding of
a graph is an embedding where every cycle has the correct
clockwise/counterclockwise orientation of nodes, modulo global
reflection, with respect to the original graph. In detail, AFL is
composed of two steps. During the first step, a folder-free graph
embedding is computed starting from the original embedding and
selecting five ad-hoc reference nodes used to approximate the
polar coordinate of any other node. Successively, a mass-spring
based optimization is performed in order to correct and balance
localized errors. In [45], an anchor-free node localization protocol,
which exploits clusterization to achieve scalability, is proposed.
Such a protocol consists of three steps: network-bootstrapping,
local position discovery and global localization. During the first
step clusters are identified and a “breadth first spanning tree”
rooted at the head of each cluster is performed. Since each node is
able to measure distances from its neighbors (by exploiting some
TOA technique) and a route exists from it to the cluster headset,
all local distance information are sent to the cluster heads. This
information will be used during the second step to build a local
map at each cluster head. Finally, in the third step cluster heads
collaborate in order to obtain a global map of the network. Such
a global coordinate system can be built from the local maps by
simply exploiting matrix rotations, translations and mirroring.

In this paper, a novel distributed, range-based algorithm,
namely the Interlaced Extended Information Filter (IEIF) is
proposed. Starting from a centralized formulation, distribution is
achieved by neglecting any coupling factor in the system and
assuming an independent reduced-order filter running on-board
each node. This formulation is successively extended by an in-
terlacement technique aiming to alleviate the error introduced by
neglecting the cross-correlation terms by “suitably” increasing the
noise covariance matrices. The proposed algorithm can provide
global localization by assuming anchors are available. In the same
way also relative localization among nodes can be achieved by
relaxing the assumption of anchors availability. The effectiveness
of this distributed approach has been thoroughly investigated by
experiments carried out with MICAz Mote platforms produced
by Crossbows, while its scalability has been analyzed by means
of simulations.

III. THEORETICAL BACKGROUND

A. Bayesian framework

The probability theory provides a suitable framework for mod-
eling the Self-Localization problem in Sensor Networks. Let us
consider a system described by the following set of equations:

xk = f(xk−1, uk, wk)

zk = h(xk, vk)
(1)

where xk is a stochastic variable representing the locations of
the nodes, uk is the control input, wk and vk are noises that
affect the system, while f(·) and h(·) are mathematical relations
that characterize the state transition and the observation zk
respectively.

In the probabilistic context, the localization problem consists
of computing the probability distribution p(xk|Zk, Uk) for all

PREDICTOR CORRECTOR 

uk zk 

p(xk-1/Zk-1,Uk-1) 
p(xk/Zk-1,Uk) 

p(xk/Zk,Uk) 

Fig. 1. Bayesian filter

times k. This probability distribution describes the joint pos-
terior density of the sensor locations (xk) given the recorded
observations (Zk) and control inputs (Uk) up to time k. To
apply this approach in a real context, it is often required to
perform the above mentioned computation online. Therefore, a
recursive formulation should be provided in terms of Bayesian
filter, graphically depicted in Fig. 1.

The idea is to provide at each time step k a new estimate by
combining the available estimate of the joint posterior distribution
p(xk−1|Zk−1, Uk−1) at time k − 1, with the control uk and the
observation zk. In this way, both the state transition model and the
observation model, describing respectively the stochastic effects
of the control input and observation, are required.

From a probabilistic point of view, the state transition
model can be described in terms of the joint prior density
p(xk|xk−1, uk). Such probability distribution exploits that the
state transition is assumed to be a Markov process in which
the next state xk depends only on the immediately preceding
state xk−1 and the applied control uk and is independent of the
observations.

On the other hand, the observation model describes the prob-
ability of retrieving an observation zk when the sensor locations
are known, and is generally stated in the form p(zk|xk).

The localization algorithm can be implemented in a standard
two-step recursive prediction (time–update)

p(xk|Zk−1, Uk) =

∫
Ξ

p(xk|xk−1, uk)p(xk−1|Zk−1, Uk−1)dxk−1

(2)
and correction (measurement update) form

p(xk|Zk, Uk) =
p(zk|xk)p(xk|zk−1, Uk)

p(zk|Zk−1, Uk)
. (3)

Equations (2) and (3) provide a recursive procedure for calcu-
lating the joint posterior p(xk|Zk, Uk), however they cannot be
implemented on a digital computer in their general form stated
above, as the joint posterior over the state space is a density
over a continuous space, hence has infinitely many dimensions.
Therefore, any effective localization algorithm has to resort to
additional assumptions.

B. The Kalman Filter

A common approach is represented by the use of Kalman
filter [22]. In this context a linear or linearized system model
is required

xk = Fkxk−1 +Bkuk + wk

zk = Hkxk + vk
(4)

where wk ∼ N (0, Qk), vk ∼ N (0, Rk), x0 ∼ N (x̂0, P0) are
mutually independent Gaussian variables for each pair of time
instant (k, k′). The joint posterior p(xk|Zk, Uk) is modeled by a
unimodal Gaussian density. The mode of this density (x̂k) yields
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the current positions of the nodes, and the variance (Pk) represents
the current uncertainty. As only these two parameters have to be
computed to propagate uncertainty, there is no need to discretize
the state space. In this way the prediction becomes

x̂k|k−1 = Fkx̂k−1|k−1 +Buk
Pk|k−1 = FkPk−1|k−1F

T
k +Qk

(5)

while the correction requires the computation of the well known
Kalman gain matrix

Kk = Pk|k−1H
T
k

[
HkPk|k−1H

T
k +Rk

]−1 (6)

before update the estimate

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1)

Pk|k = Pk|k−1 −Kk

[
HkPk|k−1H

T
k +Rk

]
KT

k .
(7)

The advantage of Kalman filter lies in its efficiency and in
the high accuracy that can be obtained, however it is not able to
cope with high nonlinear system and multimodal distributions.
Therefore in most practical situation, Kalman filter cannot be
applied. Instead, one is forced to use approximations or subop-
timal solutions. Over the years a large number of approximate
nonlinear filters has been proposed in literature [13]. Some are
fairly general, while others are more tailored to a particular
application.

Here only analytic approximations have been considered: in
this category, it is included the Extended Kalman Filter (EKF).
The main feature of this filter is that it linearizes the non linear
functions in the state transition and observation models. The EKF
is derived for non linear systems with additive noise

xk = f(xk−1, uk) + wk

zk = h(xk) + vk
(8)

where wk and vk are mutually independent, zero mean white
Gaussian random sequences, having covariance matrices Qk

and Rk respectively. The nonlinear functions f(·) and h(·) are
approximated by the first term in their Taylor series expansion.
The joint posterior density is approximated by a Gaussian density
and computed recursively as follows
• Prediction

x̂k|k−1 = f(x̂k−1|k−1, uk)

Pk|k−1 = Jf
xPk−1|k−1J

f
x
T

+Qk

(9)

• Update

Kk = Pk|k−1J
h
x
T [
Jh
xPk|k−1J

h
x
T

+Rk

]−1

x̂k|k = x̂k|k−1 +Kk

(
zk − h(x̂k|k−1)

)
Pk|k = Pk|k−1 −Kk

[
Jh
xPk|k−1J

h
x
T

+Rk

]
KT

k
(10)

where Jf
x and Jh

x is the Jacobian of the nonlinear functions f(·)
and h(·) respectively.

As only Kalman filters are used in the sequel, only these
techniques have been reported for sake of space, however a
complete review can be found in [13].

C. The Information Filter

An Information Filter (IF) is essentially a Kalman Filter
(KF) expressed in terms of measures of information about the
parameters (state) of interest rather than direct state estimates
and their associated covariances [19]. The two key information-
analytic variables are the information matrix and the information

state vector, where the term information is used according to the
Fisher definition.

The Fisher information matrix Ψk is the amount of information
that an observable random variable z carries about an unob-
servable parameter x upon which the likelihood function of z,
L(x) = p(z | x), depends. It can be derived as the covariance
of the score function, that is the partial derivative, with respect
to some parameter x, of the logarithm (commonly the natural
logarithm) of the likelihood function. If the observation is z and
its likelihood is L(x) = p(z | x), then the score Sk(x) can be
described as follows:

Sk(x) = ∇x ln p(zk | xk) (11)

=
∇x p(zk | xk)

p(zk | xk)
. (12)

Moreover, being the expectation of the score:

E[Sk(x)] =

∫
∇x p(zk | xk)

p(zk | xk)
p(zk | xk) dzk (13)

= ∇x

∫
p(zk | xk) dzk (14)

= ∇x 1 = 0 (15)

the Information matrix Ψk is simply the second order moment of
the score function Sk(x), as follows:

Ψk = E[Sk(x)Sk(x)T ] (16)

= E[{∇x ln p(zk | xk)}{∇x ln p(zk | xk)}T ]. (17)

Furthermore, if the following regularity condition holds:∫
Hx(p(zk | xk)) = ∇x∇T

x p(zk | xk) = 0 (18)

where Hx is the square matrix of second-order partial derivatives
(i.e., Hessian Matrix), the Information matrix Ψk can be also
written as:

Ψk = −E[∇x∇T
x ln p(zk | xk)] (19)

At this point, when the likelihood function p(z | x) is a Gaussian
distribution and the posterior conditional distribution is Gaussian
as well, described as p(xk | z) ∼ N (x̂k, Pk), then it can be proved
[29] that the Information Matrix is equal to the inverse of the
covariance matrix Pk as follows

Ψk = P−1
k . (20)

Likewise, the information state vector yk can be easily derived as
the product of the inverse of the information matrix and the state
estimate as follows:

yk = Ψk xk (21)

= P−1
k xk. (22)

The Information Filter formulation can be easily derived from
the Kalman Filter formulation under the assumption of Gaussian-
ity previously stated. In particular, by performing the substitutions
given in eq. (22) and eq. (20), the following set of equations is
obtained:
• Prediction

Ψk|k−1 =
[
Fk(Ψk−1|k−1)−1FT

k +Qk

]−1

Lk|k−1 = Ψk|k−1FkΨ−1
k−1|k−1 (23)

ŷk|k−1 = Lk|k−1ŷk−1|k−1 + Ψk|k−1Bkuk
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• Estimation

Ψk|k = Ψk|k−1 + Φk

ŷk|k = ŷk|k−1 + ik (24)

Φk = HT
k R
−1
k Hk

ik = HT
k R
−1
k zk.

The information filter can be extended to a linearized estimation
algorithm for nonlinear system, the Extended Information Filter
(EIF). The idea is to apply the analytic approximations used
in EKF and the substitutions of IF to build up an estimation
method for nonlinear systems. The EIF presents several interest-
ing features, among the others an easy initialization of matrices
and vectors, a reduced computational load, and aptitude to be
distributed for parallel computation. The EIF equations can be
found as follows

• Prediction

Ψk|k−1 =
[
Jf
x (Ψk−1|k−1)−1Jf

x
T

+Qk

]−1

ŷk|k−1 = Ψk|k−1f(x̂k−1|k−1, uk)

• Estimation

Ψk|k = Ψk|k−1 + Φk

ŷk|k = ŷk|k−1 + ik (25)

Φk = Jh
x
T
R−1
k Jh

x

ik = Jh
x
T
R−1[zk − h(x̂k|k−1) + Jh

x x̂k|k−1

]
.

A more comprehensive description of the Information Filter
derivation is given in [29].

IV. ON THE INTERLACEMENT OF EKF AND EIF

The interlacement technique has been developed [18] to reduce
the computational load of a nonlinear filter by means of splitting
the estimation of the state variables into parallel subfilters. The
key idea is derived from the multi-players dynamic game theory,
where each player chooses its own strategy as the optimal
response to the strategy adopted by the other players. In the
framework of estimation, players are represented by subfilters,
strategy by estimate, whereas the optimal response depends on the
estimation algorithm. The interlacement technique can be applied
both to the Extended Kalman Filter and the Extended Information
Filter, as detailed below.

A. Interlaced Extended Kalman Filter

The Interlaced Extended Kalman Filter (IEKF) has been in-
troduced to distribute the estimate of an EKF over a network
of processors, each one devoted to estimate a subspace of the
state variables minimizing the loss of cross-correlation links. For
sake of clarity, let us consider a system whose model can be
decomposed into 2 subsystems and rewritten as (for the first filter
i = 1 and j = 2, while for the second i = 2 and j = 1)

x
(i)
k = f (i)(x

(i)
k−1, x

(j)
k−1, uk) + w

(i)
k

z
(i)
k = h(i)(x

(i)
k , x

(j)
k ) + v

(i)
k .

(26)

The IEKF equations proceed from EKF filter equations (see
Fig. 2). At the k-th step, each subfilter form a prediction

First
KalmanFilter

Second
Kalman Filter

z -1

z -1

(1)
kx |k

(2)

|k k-1
P

(1)

|k k-1P

k
u

k
y

∧

(2)
k/kx

∧

(1)
kx |k-1

∧

(2)
kx |k-1

∧

(1)

|k kP

(2)

|k kP

Fig. 2. Interlaced Kalman Filter

exploiting both its own estimation and the one of the other filter,
according with the following equation

x̂
(i)
k|k−1

= f (i)(x̂
(i)
k−1|k−1

, x̂
(j)
k−1|k−1

, uk−1) (27)

P
(i)
k|k−1

= Jf,i
x,iP

(i)
k−1|k−1

Jf,iT

x,i + Q̃
(i)
k (28)

where
Q̃

(i)
k = Q

(i)
k + Jf,i

x,jP
(j)
k−1|k−1

Jf,iT

x,j (29)

being Jf,i
x,i and Jf,i

x,j the Jacobians of the relation f (i)(·) with

respect to x(i)
k and x(j)

k .

After prediction step the estimates elaborated by the two
subfilters are exchanged and used during the update step.

In this step the observation prediction is formed and compared
with the measure zk provided by the system

x̂
(i)
k|k = x̂

(i)
k|k−1

+K
(i)
k [zk − h(i)(x̂

(i)
k|k−1

, x̂
(j)
k|k−1

)] (30)

P
(i)
k|k = P

(i)
k|k−1

−K(i)
k Jh,i

x,iP
(i)
k|k−1

(31)

where the Kalman gain is computed applying the relation

K
(i)
k = P

(i)
k|k−1

Jh,i
x,i

T
[Jh,i

x,iP
(i)
k|k−1

Jh,i
x,i

T
+ R̃

(i)
k ]−1

in which
R̃

(i)
k = Rk + Jh,i

x,jP
(j)
k|k−1

Jh,i
x,j

T
(32)

where Jh,i
x,j and Jh,i

x,j are the Jacobians of h(i)(·) with respect to

x
(i)
k and x(j)

k .
From (29) and (32) it can be noticed that the process and

measurement noise covariance matrices Q(i)
k and R(i)

k are suitable
increased by addition of positive semi definite quantities that take
into account the error introduced by the decoupling operation. It
is easy to recognize that the term added to R(i)

k in (32) represents
the cross-correlation between the filters due to innovation process,
while the term added to Q

(i)
k in (29) is related to the cross-

correlation induced by propagation process.

B. Interlaced Extended Information Filter

The Interlaced Extended Information Filter (IEIF) is the coun-
terpart of the IEKF in the information space. As already men-
tioned, the IEF is suitable for distributing the estimation process
over parallel computation units, due to the loose correlation
between the elements of the information vector. In the information
space, indeed, the correlation between information variables, that
are not explicitly connected or directly involved in a measurement,
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is not represented, whereas the covariance matrix explicitly stores
this relation in the corresponding off-diagonal entries. Apart from
this rough correlation between information variables, there is
still a coupling factor that has to be taken into account even
in presence of distributed implementation of EIF to prevent the
divergence of the filter itself. In order to consider this coupling
factor, the Interlaced Extended Information Filter is introduced
in this work. Let us consider again a system whose model
can be decomposed into 2 subsystems having model equations
expressed by (26). The IEIF schema is represented in Fig. 2, after
substituting IEKF with IEIF while recalling the relation given by
(20). At each time the filter compute a prediction and estimation
step exploiting the equations below

• Prediction

Ψ
(i)
k|k−1

=
[
Jf,i
x,i(Ψ

(i)
k−1|k−1

)−1Jf,i
x,i

T
+ Q̃k

]−1

ŷ
(i)
k|k−1

= Ψk|k−1f(x̂
(i)
k−1|k−1

, x̂
(j)
k−1|k−1

, uk) (33)

Q̃
(i)
k = Q

(i)
k + Jf,i

x,j

(
Ψ

(j)
k−1|k−1

)−1
Jf,iT

x,j

• Estimation

Ψ
(i)
k|k = Ψ

(i)
k|k−1

+ Φ
(i)
k

ŷ
(i)
k|k = ŷ

(i)
k|k−1

+ i
(i)
k (34)

Φ
(i)
k = Jh,i

x,i

T
R̃

(i)−1
k Jh,i

x,i

i
(i)
k = Jh,i

x,i

T
R̃

(i)−1
k z

(i)′

k

R̃
(i)
k = R

(i)
k + Jh,i

x,j

(
Ψ

(j)
k|k−1

)−1
Jh,i
x,j

T

z
(i)′

k = ν
(i)
k + Jh,i

x,i x̂
(i)
k|k−1

+ Jh,i
x,j x̂

(j)
k|k−1

ν
(i)
k = z

(i)
k − h

(i)(x̂
(i)
k|k−1

, x̂
(j)
k|k−1

).

After every single step the sub-filters exchange their results in
terms of best estimate and the associate covariance. The estimate
is used to compute the expected measurement, whereas the
covariance matrix is involved in the computation of the matrices
Q̃k and R̃k. These matrices have the same meaning introduced
for IEKF and convey the coupling factor between information
variables in subsystems i and j.

V. SENSOR NETWORK SCENARIO

In this paper, a group of Ω nodes deployed on a planar
environment is considered. A typical sensor network node’s hard-
ware consists of a microprocessor with reduced computational
capability, a radio component, several sensor devices, a minimal
data storage unit and a battery with limited life. Furthermore, a
few nodes are equipped with an absolute position system device
so that localization in regards to a global frame can be obtained for
the whole network. Finally, nodes are assumed to be motionless.

The state of the node i at time k is described by its location
with respect to a global frame as follows:

x
(i)
k = [ p

(i)
x,k p

(i)
y,k ]T (35)

Thus the state of the whole system is the vector obtained by
collecting the locations of all nodes:

xk = [x
(1)T
k , · · · , x(Ω)T

k ]T (36)

A. System model

Since nodes are assumed to be still, the model of the i-th node
is simply given by:

x
(i)
k = x

(i)
k−1 + w

(i)
k (37)

where w
(i)
k ∈ R2 is a zero mean white noise vector with

covariance matrix Q(i)
k .

Note that, the system is naturally fully decoupled as the state
transition of a node does not depend upon other nodes. This
property turns out to be very useful for the distributed formulation
of the filter. Furthermore, the framework allows to mix static
nodes with mobiles one simply by changing the state transition
model according to the kinematics of each sensor node [31].

B. Observation model

Nodes are equipped with several sensor devices. In particular,
a way to measure inter-node distances is assumed to be available.
The related observation model can be obtained considering the
Euclidian distance as follows:

z
(i,j)
k = h(i,j)(x(i)

k , x
(j)
k

)
+ v

(i)
k (38)

= ‖ x(i)
k − x

(j)
k ‖ +v

(i)
k (39)

=

√(
p

(i)
x,k − p

(j)
x,k

)2
+
(
p

(i)
y,k − p

(j)
y,k

)2
+ v

(i)
k (40)

where v(i)
k ∈ R is a zero mean white noise vector with covariance

R
(i)
k .

VI. THE INFORMATION FILTER FOR SENSOR NETWORKS

Due to the nonlinear nature of the observation model, the linear
Information Filter previously introduced cannot be applied as it
is. An extension to deal with the non-linearity of the observation
model is required. Note that having a linear prediction model re-
sults in a “hybrid” Information Filter: with the prediction equation
of a linear IF and the estimation equation of an Extended IF. In
the following, a centralized formulation of the filter is proposed.
Then, a distributed one based on simplifying assumptions is
devised. However, both filters can be summarized by the same
two-stage formulation:
• Prediction

Ψk|k−1 = [Ψ−1
k−1|k−1 +Qk]−1

Lk|k−1 = Ψk|k−1Ψ−1
k−1|k−1 (41)

ŷk|k−1 = Lk|k−1ŷk−1|k−1

• Estimation

Ψk|k = Ψk|k−1 + Φk

ŷk|k = ŷk|k−1 + ik (42)

Φk = Jh
x
T
R−1
k Jh

x

ik = Jh
x
T
R−1
k z′k

z′k = νk + Jh
x x̂k|k−1

νk = zk − h(x̂k|k−1)

Differences between the centralized formulation and the dis-
tributed formulation are merely related to the state space dimen-
sion and to the construction of the Jacobian matrix Jh

x .
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A. Centralized EIF

In the case of the centralized formulation, the whole state
of the system as given in eq. (36) is considered. Therefore,
the computation of the complete Jacobian matrix involves all
the inter-distance measurements available over the network. In
particular, given a generic observation z

(i,j)
k , representing the

distance from the node i to the node j measured by the node
i, the related Jacobian row is:

Jh(i,j) =
[
0 J

h(i,j)
x,i 0 J

h(i,j)
x,j 0

]
(43)

where

J
h(i,j)
x,i =

[
p

(i)
x − p

(j)
x

d

p
(i)
y − p

(j)
y

d

]
= −Jh(i,j)

x,j (44)

with

d =

√(
p

(i)
x − p

(j)
x

)2
+
(
p

(i)
y − p

(j)
y

)2
(45)

According to this notation, given the following set of observations

zk =
[
z

(i,j)
k , z

(l,j)
k , z

(i,l)
k , z

(l,i)
k

]T
among three nodes {xi, xj , xl},

the resulting Jacobian matrix Jh
x is:

Jh
x =

[
Jh(i,j)T Jh(l,j)T Jh(i,l)T Jh(l,i)T

]T

=


0 J

h(i,j)
x,i 0 J

h(i,j)
x,j 0

0 0 J
h(l,j)
x,l J

h(l,j)
x,j 0

0 J
h(i,l)
x,i J

h(i,l)
x,l 0 0

0 J
h(l,i)
x,i J

h(l,i)
x,l 0 0


(46)

B. Distributed EIF

A distributed formulation can be introduced by means of some
simplifying assumptions. The system model is linear and fully
decoupled thus suitable for a distributed implementation, while
the Jacobian matrix Jh

x features some couplings. In particular, for
each node i the following Jacobian block Jh(i)

x can be considered:

J
h(i)
x =

 0 J
h(i,j)
x,i 0 J

h(i,j)
x,j 0

0 J
h(i,l)
x,i J

h(i,l)
x,l 0 0


(47)

Furthermore, according to eq. (47), it can be noticed that if a node
i considers its neighbors as anchors at each time-step, the partial
derivatives of node j are always naughts for a generic Jacobian
row J

h(i)
x . Therefore, the related Jacobian block Jh(i)

x becomes:

J
h(i)
x =

 0 J
h(i,j)
x,i 0 J

h(i,j)
x,j 0

0 J
h(i,l)
x,i J

h(i,l)
x,l 0 0



=

 0 J
h(i,j)
x,i 0 0 0

0 J
h(i,l)
x,i 0 0 0


=

[
0 Jh,i

x,i 0 0 0
]

In this way the complete Jacobian matrix Jh
x , described in eq.

(46), turns out to be a block-matrix. Therefore, the centralized

formulation can be easily decomposed in a set of Ω reduced-order
filters, each one run by a single node with the aim of estimating
its location with respect to information (in terms of observations
and latest estimates) coming from the other nodes.

Furthermore, the capability of the algorithm to perform the
localization process with or without anchors can be explained
by the fact that for how the algorithm is conceived, neighbors
are always considered as anchors. Thus, the availability of real
anchors does not affects the formulation, but the accuracy of the
localization process

C. Interlaced EIF

Considering the neighborhood of each node as a set of anchors
helps to distributed the formulation of the Extended Information
Filter. However, at the same time an error is introduced into
the estimation process as a consequence of this approximation.
The Interlacement technique introduced in Sec. IV-A turns out to
be an effective solution to mitigate the error introduced by this
simplifying assumption. The resulting formulation for the sensor
network scenario is
• Prediction

Ψ
(i)
k|k−1

=
[(

Ψ
(i)
k−1|k−1

)−1
+Q

(i)
k

]−1

L
(i)
k|k−1

= Ψ
(i)
k|k−1

(
Ψ

(i)
k−1|k−1

)−1 (48)

ŷ
(i)
k|k−1

= L
(i)
k|k−1

ŷ
(i)
k−1|k−1

• Estimation

Ψ
(i)
k|k = Ψ

(i)
k|k−1

+ Φ
(i)
k

ŷ
(i)
k|k = ŷ

(i)
k|k−1

+ i
(i)
k

Φ
(i)
k = Jh,i

x,i

T
R̃

(i)−1

k Jh,i
x,i

i
(i)
k = Jh,i

x,i

T
R̃

(i)−1

k z
(i)′

k (49)

R̃
(i)
k = R

(i)
k +

∑
j∈N (i)

Jh,i
x,j

(
Ψ

(j)
k|k−1

)−1
Jh,i
x,j

T

z
(i)′

k = νk + Jh,i
x,i x̂

(i)
k|k−1

ν
(i)
k = z

(i)
k − h

(i)(x̂
(i)
k|k−1

, ξ
(i)
k )

where ξ(i)
k =

{
x̂

(j)
k|k−1

: j ∈ Nk(i)
}

. Note that, the interlacement
contribution does not add any significant complexity to the
estimation process as the Jacobian term Jh,i

x,j is simply obtained by

negation of the term Jh,j
x,i and the term

(
Ψ

(j)
k|k−1

)−1 is broadcasted
by the neighbors.

D. Algorithmic Derivation

From an algorithmic point of view, a possible implementation
of the distributed EIF running onboard each node is given in
algorithm (1). In detail, at each iteration k a given node i performs
the following four steps: it listens for a pre-fixed τ amount of time
waiting for new data

{
z

(i)
k ,Ψ

(i)
k

}
broadcasted by each other node

within its range of visibility, successively it updates its estimate
x

(i)
k by executing the set of equations given in eq. (48) and

eq. (49) where the Jacobian matrix Jh(i) is built, as previously
described in eq. (48), according to the collected data

{
z

(i)
k ,Ψ

(i)
k

}
,

finally it notifies to the network its latest estimate
(
y

(i)
k|k,Ψ

(i)
k|k
)
.

Note that, no clock synchronization is required for the sensor
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network, indeed the temporal index k for the data coming from
neighboring nodes is simply meant as the most recent available
so far.

Algorithm 1: Reduced-Order Filter

Data:
{
ŷ

(i)
k−1|k−1

,Ψ
(i)
k−1|k−1

}
Result:

{
ŷ

(i)
k|k,Ψ

(i)
k|k
}

/* Data Collecting */{
z

(i)
k ,Ψ

(i)
k

}
← listening procedure(τ ) ;

where:

z
(i)
k =

{
z

(i,j1)
k , · · · , z(i,jMi

)

k

}
,

Ψ
(i)
k =

{
ŷ

(j1)
k−1|k−1

,
(
Ψ

(j1)
k−1|k−1

)−1
, · · · , ŷ(jMi

)

k−1|k−1
,
(
Ψ

(jMi
)

k−1|k−1

)−1}
/* Updating Step */{
ŷ

(i)
k|k−1

,Ψ
(i)
k|k−1

}
← prediction proc

(
ŷ

(i)
k−1|k−1

,Ψ
(i)
k−1|k−1

)
;

/* Estimation Step */{
ŷ

(i)
k|k,Ψ

(i)
k|k
}
← estimation procedure

(
z

(i)
k ,Ψ

(i)
k

)
/* Notification Step */

notification procedure
(
ŷ

(i)
k|k,Ψ

(i)
k|k
)

VII. PERFORMANCE ANALYSIS

Several computer simulations have been performed in order to
investigate the effectiveness of the proposed distributed interlaced
extended information filter on a large scale. Moreover, a compar-
ison with an interlaced extended Kalman filter has been carried
out as well. Note that, in this work the attention is focused on
the design of an interlacement technique within the information
filtering. For this reason only a comparison between distributed
version of the algorithms is provided. The reader is referred to the
works [16], [17] for a detailed analysis concerning a comparison
with the centralized versions of the algorithms.

In particular, the following aspects of interest have been con-
sidered:
• Level of noise of observations,
• Scalability of the algorithm,

while the following two indexes of quality have been used:
• Estimation accuracy,
• Convergence velocity.

The former is given in terms of distance between the estimated
and the real location of a node. The Euclidian distance is adopted
as metric. Maximum, minimum and average errors computed over
the whole network are considered. The latter is given in terms of
number of steps required by the algorithm to settle around the best
estimation. This index provides an evaluation of the “reactivity”
of the algorithm.

Table I describes how the performance indexes vary with
respect to different levels of noise. Convergence is assumed to be
reached when the fluctuation of the estimate was bounded within
a predefined interval, ± 0.5 cm. A configuration involving 90

nodes with 30 anchors deployed on a 30 m × 30 m environment is
considered. According to the obtained results, the accuracy of the
estimation is considerably influenced by the level of noise, while it
does not seem to significantly affect neither the convergence time
nor the percentage of failures, i.e., the number of unsuccessful
trials, of the algorithm.

TABLE I
STATISTICAL ANALYSIS: INDEXES OF QUALITY.

Conf Noise Std Noise Std Noise Std
0.05 [m] 0.2 [m] 0.5 [m]

IEIF IEKF IEIF IEKF IEIF IEKF
Max Error [cm] 2.88 1.79 11.64 6.97 28.52 18.12
Min Error [cm] 0.14 0.06 0.56 0.24 1.47 0.62

Mean Error [cm] 1.09 0.57 4.38 2.30 11.09 5.92
Std. Dev. [cm] 0.60 0.36 2.40 1.44 6.00 3.77

Conv. Step 21 39 21 42 25 45
% Failure 3 10 4 3 4 4

Table II investigates the scalability of the proposed algorithm.
In this analysis, the level of noise is fixed to 0.1 for all the con-
figurations. Furthermore, anchors are supposed to be uniformly
distributed and both the environmental size and the ration between
the number of nodes and number of anchors are kept constant.
According to the obtained results, the higher is the number of
nodes the quicker is the convergence of the algorithm. In the same
way, the number of failures decreases with an increasing number
of nodes. On the other hand, the accuracy of the estimation is not
significantly influenced by the dimension of the sensor network,
being this related to the hardware sensing capabilities.

TABLE II
STATISTICAL ANALYSIS: INDEXES OF QUALITY.

Conf N:120 A:30 N:180 A:45 N:360 A:90
IEIF IEKF IEIF IEKF IEIF IEKF

Max Error [cm] 5.59 3.53 4.23 3.18 4.11 3.01
Min Error [cm] 0.27 0.11 0.13 0.07 0.11 0.05

Mean Error [cm] 2.17 1.16 1.52 0.96 1.30 0.8
Conv. Step 20 45 17 31 15 27
% Failure 4 6 1 0 0 0

The algorithm might converge to alternative admissible so-
lutions. Indeed, given Ω nodes with Θ anchors, “symmetrical”
solutions may exist in regard to the deployment of the anchors.
In the case of perfect communication, i.e., no packet is lost, and
fully connectivity among nodes, placing anchors on the boundary
is a sufficient condition to have an unique solution. However, in
a real system some nodes may not be able to communicate with
other nodes, therefore in practice alternative plausible solutions
with respect to the available data may always exist.

VIII. EXPERIMENTAL RESULTS

Experimental results have been performed to validate the pro-
posed distributed interlaced extended information filter in a real
context. In particular, apart from the IEKF, a comparison against a
third algorithm, i.e., the ESDP algorithm, has been considered. In
detail, the ESDP algorithm is a semi-definite programming (SDP)
relaxation approach proposed in [43], for which the code is freely
available at http://www.stanford.edu/∼yyye/.

The network is composed of MICAz (MPR2400) plat-
form, a generation of Motes from Crossbow Technology. The
MPR2400 (2400 MHz to 2483.5 MHz band) uses the Chipcon
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CC2420, IEEE 802.15.4 compliant, ZigBee ready radio frequency
transceiver integrated with an Atmega128L micro-controller. It
provides also a flash serial memory, as well as a 51 pin I/O
connector that allows several sensor and data acquiring boards to
be connected to it. MICAz platform comes along with TinyOS, an
open-source event-driven operating system designed for wireless
embedded sensor networks. It features a component-based archi-
tecture which enables rapid innovation and implementation while
minimizing code size as required by the severe memory con-
straints inherent in sensor networks. TinyOS component library
includes network protocols, distributed services, sensor drivers,
and data acquisition tools, all of which can be used as–is or be
further refined for a custom application.

A. Ranging Technique

A ranging technique based on the Time of Arrival (ToA)
principle is exploited to compute inter-node distances. The im-
plementation consists of a node sending first a RF packet and
emitting an acoustic signal right after. For the receiving node,
the RF signal, whose propagation can be assumed instantaneous,
is used to trigger a timer, while the acoustic signal, whose
propagation delay is measurable, is used to stop it. By the
measurement of such a propagation delay and by knowing the
propagation velocity of the acoustic signal, the distance is then
computed.

Regarding the MICAz platform, the MTS300 and the MTS310
boards, both providing a sounder and a microphone, have been
exploited. The sounder is a simple 4 kHz fixed frequency
piezoelectric resonator, while the microphone can be used ei-
ther for acoustic ranging or for general acoustic recording and
measurement. Therefore, the RF and acoustic (sounder) signals
are exploited for the implementation of the proposed ranging
technique.

The proposed ranging technique for MICAz platforms has
been thoroughly investigated in order to determine the achievable
performance. A significant amount of inter-node distances (more
than 200 measurements) were collected and a statistical analysis
was performed. A precision of 3 ∼ 8 cm with a standard deviation
of 8 ∼ 14 cm was experienced considering distances ranging from
20 cm to 2.5 m.

In addition, experiments have been carried out to verify whether
the mutual orientation of nodes might influence the measured
distance. For such a reason, two nodes have been arranged on the
floor at the distance of 54 cm from each other. Such a distance has
been manually measured from the sounder of the emitter to the
microphone of the receiver. Successively, data has been collected
considering different orientations of nodes, in order to simulate
a realistic random deployment on the ground. Table III shows
the statistic results using again more than 200 measurements
for each configuration. According to this analysis differential
mutual orientations do not significantly influence the measure of
distances. However, as mentioned above, data presents a bias as
well as a considerable standard deviation that makes their use
challenging.

The bias and the standard deviation describe the uncertainty in
the observing process. Several are the sources of such uncertainty.
First of all, the parameters used to characterize the propagation
velocity of an acoustic wave in the air have been considered fixed,
while they change according with humidity and temperature.

Secondly, the transmission protocol introduces a delay, which
cannot be taken into account, as it is not directly observable.

Exp. Mean Std node 1 node 2
value dev orientation orientation
[m] [m] [rad] [rad]

1 0.5781 0.1229 π/2 3π/2
2 0.5734 0.1331 3π/2 0
3 0.5888 0.1146 3π/2 3π/2
4 0.5696 0.1052 3π/2 π
5 0.5933 0.1098 3π/2 π/2
6 0.6008 0.1230 5π/4 3π/4
7 0.5972 0.1217 5π/4 π/4
8 0.5853 0.1136 5π/4 5π/4
9 0.5683 0.1181 5π/4 5π/2
10 0.5892 0.1186 5π/4 π
11 0.5786 0.1239 5π/4 7π/4
12 0.5668 0.1299 0 0

TABLE III
INTER-NODE RANGING TECHNIQUE: EXPERIMENTAL RESULTS.

x

y

AntennaSounderMicrophone

B. Deployment and Evaluation

Several network deployments have been considered for the al-
gorithm evaluation. Each deployment has been obtained by taking
advantage of the regularity of the flooring grid and real locations
were manually measured exploiting such a regularity. Note that,
the extent of the deployment region has been constrained by the
hardware capability of the MICAz nodes. Indeed, experiments
reveals measurements to be sufficiently reliable only within a
range of approximately 2 meters. Here, results related only to
two configurations are reported.

Fig. 3 shows the first deployment where 10 nodes are consid-
ered. Each node is ideally within the communication range of
each other. This way a full connected graph is achieved.

Table IV describes the result of the experiment involving the
first environment (Fig. 3). Three different arrangements of anchors
are considered, each one involving three nodes. According to
experimental results for this configuration, varying the set of an-
chors does not significantly influence the accuracy of estimation.
In particular, the ESDP algorithm has proven to perform slightly
better for all the anchors configurations. This can be explained by
the fact that being the ESDP a centralized algorithm, it can take
advantage of the full availability of information. Nevertheless,
it is worthy to mention that a similar estimation accuracy is
achieved also by the other two algorithms despite from the partial
information availability. In regard to the convergence velocity, the
EIF turns out to perform slightly better. This can be explained
by the fact that while the Kalman filter requires an initialization
for the covariance matrix P which slows down the convergence,
the Information Filter does not require any initialization for the
information matrix [29].
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Fig. 3. First deployment: 3 (variable) anchors - 7 nodes.

Interlaced Extended Information Filter
Anchors Max Error Min Error Mean Error Conv.

[cm] [cm] [cm] [Steps]
{1,2,3} 12.0 2.9 6.4 8
{1,6,7} 11.8 4.1 6.7 14
{5,9,10} 12.8 1.3 5.2 12

Interlaced Extended Kalman Filter
Anchors Max Error Min Error Mean Error Conv.

[cm] [cm] [cm] [Steps]
{1,2,3} 11.1 4.1 7.9 25
{1,6,7} 11.0 2.5 6.5 26
{5,9,10} 12.7 1.9 5.6 24

Edge-based SDP relaxation (ESDP)
Anchors Max Error Min Error Mean Error Conv.

[cm] [cm] [cm] [Steps]
{1,2,3} 7.3 1.6 5.5 -
{1,6,7} 11.7 2.6 6.5 -
{5,9,10} 11.6 2.5 6.8 -

TABLE IV
FIRST DEPLOYMENT: IEIF VS IEKF VS ESDP.

Fig. 4 shows the second deployment where 11 nodes are
considered. Again, each node is ideally within the communication
range of each other in order to have a full connected graph.
However, it should be pointed out that at each iteration only a
portion of the network is able to collaborate, due to the high
number of outliers occurring in the measurement process. This
implies that only partial information is available to the nodes.

Table V describes the result of the experiment involving the
second environment (Fig. 4). Also in this deployment, three
different arrangements of anchors are considered, each one in-
volving three nodes. According to experimental results for this
configuration, varying the set of anchors still does not significantly
influences the performance. However, a general deterioration
of the estimation accuracy can be noticed, due to the large
number of packets lost which considerably reduces the amount
of information available for localization. Furthermore, also in this
scenario the ESDP algorithm has proven to be perform slightly

0. 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0. 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1

2

3
4

5

6

7

8

9

10

11

[m]

[m
]

Fig. 4. Second deployment: 3 (variable) anchors - 8 nodes.

Interlaced Extended Information Filter
Anchors Max Error Min Error Mean Error Conv.

[cm] [cm] [cm] [Steps]
{1,2,4} 21.0 1.4 12.9 23
{3,4,5} 18.7 6.3 11.8 17
{5,6,11} 22.4 8.6 16.6 25

Interlaced Extended Kalman Filter
Anchors Max Error Min Error Mean Error Conv.

[cm] [cm] [cm] [Steps]
{1,2,4} 23.6 9.4 15.9 22
{3,4,5} 16.5 10.1 13.2 17
{5,6,11} 21.9 8.9 17.4 39

Edge-based SDP relaxation (ESDP)
Anchors Max Error Min Error Mean Error Conv.

[cm] [cm] [cm] [Steps]
{1,2,3} 19.2 2.3 11.4 -
{3,4,5} 17.4 2.6 11.7 -
{5,6,11} 20.6 2.3 11.6 -

TABLE V
SECOND DEPLOYMENT: IEIF VS IEKF VS ESDP.

better . In particular, the advantages related to the availability
of full information are more evident in this scenario where a
significant lost of packets was experienced.

IX. COMPUTATIONAL COMPLEXITY ANALYSIS

Here, a comparative analysis regarding the computational
complexity of both the Interlaced Extended Information Filter
previously introduced and the Interlaced Extended Kalman Filter
given in Sec. IV-A is propsed. In order to achieve that, the
asymptotic notation (a mathematical notation used to describe the
asymptotic behavior of functions) is considered. Its purpose is to
characterize a function behavior for very large (or very small)
inputs in a simple but rigorous way that enables comparison to
other functions [1].

Furthermore, in order to easily analyze the filter equations, a
formalism has been introduced with the aim of describing the
matrix operations and the related computational complexity:
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• SUM(NxM,NxM) = O(N ·M)

• SUB(NxM,NxM) = O(N ·M)

• MUL(NxM,MxP) = O(N ·M · P )

• INV(NxN) = O(N3)

Note that, for sake of simplicity, the asymptotic complexity
assumed for these operations does not reflect the most efficient
implementation available so far. However, it does not affect the
validity of the analysis since the complexity of the most efficient
implementations scale approximatively the same. Furthermore,
all the elementary operations related to scalar values have been
assumed with complexity O(1).

A. The Interlaced Extended Kalman Filter

The complexity of the Interlaced Extended Kalman Filter
running on-board of a node can be summarized as in Table VI,
where N is the dimension of each node state and M is the number
of measurements (neighbors) for each node.

TABLE VI
INTERLACED EXTENDED KALMAN FILTER COMPUTATIONAL LOAD

x̂
(i)
k|k−1

= x̂
(i)
k−1|k−1

-

P
(i)
k|k−1

= [P
(i)
k−1|k−1

+Q
(i)
k ] SUM(NxN,NxN)

x̂
(i)
k|k = x

(i)
k|k−1

+K
(i)
k νk SUM(Nx1,Nx1)

MUL(NxM,Mx1)

ν
(i)
k = z

(i)
k − h

(i)(x̂
(i)
k|k−1

, ξ
(i)
k ) SUB(Mx1,Mx1)

MUL(NxN,NxM)

K
(i)
k = P

(i)
k|k−1

Jh,i
x

T
(S

(i)
k )−1 MUL(NxM,MxM)

INV(MxM)

S
(i)
k = Jh,i

x Pk|k−1J
h,i
x

T
+ R̃

(i)
k MUL(MxN,NxM)

SUM(MxM,MxM)
MUL(NxM,MxN)

P
(i)
k|k = (I −K(i)

k Jh,i
x )P

(i)
k|k−1

SUB(NxN,NxN)

MUL(NxN,NxN)
SUM(MxM,MxM)
MUL(1xN,NxN)

R̃
(i)
k = R

(i)
k +

∑
j∈N (i)

Jh,i
x,jP

(j)
k|k−1

Jh,i
x,j

T
MUL(1xN,Nx1)

M times

Three remarks are now in order:
• Only matrix operations have been taken into account,
• The complexity of the Jacobian construction has been ne-

glected,
• The complexity of the observation evaluation has been

neglected.
The first observation underlines that the asymptotic behavior of
the algorithm is desired. The second observation comes from the
consideration that the computational complexity of the Jacobian
is always lighter compared to other operations. Thus, it will be
omitted for sake of clarity. The third observation follows the same
reasoning as the second one.

B. The Interlaced Extended Information Filter

The complexity of the distributed Extended Information Filter
running on-board of a node can be summarized as in Table VII.
The same considerations that have been done for the IEKF still
hold here.

TABLE VII
EXTENDED INFORMATION FILTER COMPUTATIONAL LOAD

INV(NxN)

Ψ
(i)
k|k−1

= [(Ψ
(i)
k−1|k−1

)−1 +Q
(i)
k ]−1 SUM(NxN,NxN)

INV(NxN)

L
(i)
k|k−1

= Ψ
(i)
k|k−1

(Ψ
(i)
k−1|k−1

)−1 MUL(NxN,NxN)

ŷ
(i)
k|k−1

= L
(i)
k|k−1

ŷ
(i)
k−1|k−1

MUL(NxN,Nx1)

Ψ
(i)
k|k = Ψ

(i)
k|k−1

+ Φ
(i)
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INV(MxM) (diag)

Φ
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x (R̃
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+ i
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i
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x (R̃
(i)
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k
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MUL(NxM,Mx1)
MUL(MxN,Nx1)

z
(i)
k

′
= ν

(i)
k + Jh,i

x,i x̂
(i)
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SUM(Mx1,Mx1)

INV(NxN)
MUL(NxN,Nx1)

ν
(i)
k = z

(i)
k − h

(i)(x̂
(i)
k|k−1

, ξ
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(
Ψ

(j)
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M times

C. IEKF vs. IEIF

In order to find out the differences between the two algorithms,
the matrix operations have been compared:

TABLE VIII
COMPUTATIONAL COMPLEXITY: COMPARATIVE TABLE I

IEKF EIF
SUM(NxN,NxN) INV(NxN)
SUM(Nx1,Nx1) SUM(NxN,NxN)
MUL(NxM,Mx1) INV(NxN)
SUB(Mx1,Mx1) MUL(NxN,NxN)
MUL(NxN,NxM) MUL(NxN,Nx1)
MUL(NxM,MxM) SUM(NxN,NxN)

INV(MxM) INV(MxM) (diag)
MUL(MxN,NxM) MUL(NxM,MxM) (diag)
SUM(MxM,MxM) MUL(NxM,MxN)
MUL(NxM,MxN) SUM(Nx1,Nx1)
SUB(NxN,NxN) MUL(NxM,Mx1)
MUL(NxN,NxN) MUL(MxN,Nx1)
SUM(MxM,MxM) SUM(Mx1,Mx1)

MUL(1xN,NxN)xM INV(NxN)
MUL(1xN,Nx1)xM MUL(NxN,Nx1)

SUB(Mx1,Mx1)
MUL(1xN,Nx1)
MUL(1xN,NxN)xM
MUL(1xN,Nx1)xM

Table VIII, which summarizes the set of operations required by
both algorithms at each iteration, can be simplified considering
that from an asymptotical standpoint, some operations, such as
sum, subtraction or transposition, have a lower order than other
ones, such as multiplication or inversion.

Table IX can be further simplified considering that from an
asymptotical point of view, the number of occurrences, if not
related to any of the parameters of interest, does not influence
the complexity of the algorithm.

Table X describes the subset of operations characterizing the
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Fig. 5. Computational load: IEIF vs IEKF.

TABLE IX
COMPUTATIONAL COMPLEXITY: COMPARATIVE TABLE II
IEKF A.C.C. EIF A.C.C.

INV(NxN) O(N3)
MUL(NxM,Mx1) O(N ·M) INV(NxN) O(N3)

MUL(NxN,NxN) O(N3)
MUL(NxN,NxM) O(N2 ·M) MUL(NxN,Nx1) O(N2)
MUL(NxM,MxM) O(N ·M2)
INV(MxM) O(M3) INV(MxM) (diag) O(M)

MUL(MxN,NxM) O(N ·M2) MUL(NxM,MxM) (diag) O(N ·M)
MUL(NxM,MxN) O(N2 ·M)

MUL(NxM,MxN) O(N2 ·M)
MUL(NxM,Mx1) O(N ·M)

MUL(NxN,NxN) O(N3) MUL(MxN,Nx1) O(M ·N)
MUL(1xN,NxN)xM O(N2 ·M)
MUL(1xN,Nx1)xM O(N ·M) INV(NxN) O(N3)

MUL(NxN,Nx1) O(N2)
MUL(1xN,NxN)xM O(N2 ·M)
MUL(1xN,Nx1)xM O(N ·M)

TABLE X
COMPUTATIONAL COMPLEXITY: COMPARATIVE TABLE III

IEKF A.C.C. EIF A.C.C.
MUL(NxM,Mx1) O(N ·M) INV(NxN) O(N3)

MUL(NxN,NxN) O(N3)
MUL(NxN,NxM) O(N2 ·M) MUL(NxN,Nx1) O(N2)
INV(MxM) O(M3)

MUL(MxN,NxM) O(N ·M2)
MUL(NxM,MxN) O(N2 ·M)

MUL(NxN,NxN) O(N3) MUL(MxN,Nx1) O(M ·N)
MUL(NxN,Nx1) O(N2)

computational complexity of the two approaches. The dominant
operation for the IEIF can be either the multiplication of a matrix
N ×M with a matrix M × N with complexity O(N2 ·M) or
the inversion of a matrix N ×N with complexity O(N3), where
N is the dimension of the state space and M is the number of
observations. Conversely, for the IEKF the dominant operation
can be either the inversion of a matrix N × N with complexity
O(N3) or the inversion of a matrix M × M with complexity
O(M3).

The use of one technique over the other depends upon the
reciprocal dimension between the state space and the observa-
tions. If the dimension of the state space is lower than the
dimension of the observations N < M , the IEIF turns out to
be computationally more efficient than the IEKF. Conversely, if

the dimension of the state space is higher than the dimension of
the observations N > M , the IEKF performs better even though
the complexity is the same from an asymptotical point of view.
Indeed, this is due to the fact that several operations with cubic
complexity in N are required by the IEIF at each iteration. Note
that for the proposed Sensor Network scenario, the dimension
of the state space for each node is fixed to N = 2, while the
dimension of the observations is strictly related to the number of
nodes Ω deployed into the environment. Therefore the Interlaced
Extended Information Filter turns out to be more effective than
the Interlaced Extended Kalman Filter. The same considerations
would apply even if a 3-dimensional scenario (N = 3) for
deployment were considered. Fig. 5 shows the computational load
for the two algorithms with respect to an increasing number of
nodes. Note that, in this analysis the dimension of the state space
for each node was fixed to N = 2, the ratio between the number
of nodes and the number of anchors was kept constant and so
was the size of the environment. In this way, despite the random
nature of the deployment, the number of observations available
for each node was increasing with respect to an increasing
number of nodes. According to the results given in Table X, the
computational load for the EIKF clearly shows a cubic trend while
the computational load for the IEIF shows a quadratic trend.

Special case: single observation update: Thus far an analy-
sis where M observations were processed all together at each
iteration has been provided. The computational complexity can
be even further reduced if considering a single observation at a
time. However it should be noticed that this solution has two
major drawbacks: the convergence time is significantly increased
and the accuracy of the estimation can be highly affected by
the order in which the measurement are processed, due to the
nonlinear nature of the observations. In this case, for the IEKF the
inversion of the innovation is reduced to the inversion of a scalar.
The dominant operation is given by the multiplication required
for the computation of this scalar and its complexity becomes
linear with the dimension of the state. However, since it has to be
repeated M times the real complexity becomes O(N ·M), which is
indeed significantly lower compared to the previous one (O(M3)).
Note that, the situation for the EIF is completely different. In fact,
even if the computational load required for the construction of the
Innovation matrix becomes linear with the dimension of the state,



13

several inversions of matrixes N × N are still required at each
iteration. Therefore in this case any potential advantage simply
vanishes.

X. CONCLUSIONS

In this paper, the Interlaced Extended Information Filter (IEIF)
for self-localization in Sensor Network has been introduced.
The centralized formulation has been distributed by neglecting
any coupling factor in the system and assuming an independent
reduced-order filter running on-board each node. The original
formulation has been successively extended by an interlacement
technique which aims to alleviate the error introduced by neglect-
ing the cross-correlation terms by “suitably” increasing the noise
covariance matrices.

The effectiveness of the proposed formulation has been in-
vestigated via both computer simulations and real experiments
involving the MICAz mote platforms produced by Crossbows. In
addition, a comparison with an Interlaced Extend Kalman Filter
(IEKF) has been provided.

Computer simulations focused on investigating the efficacy
of the proposed algorithm in a large scale. The obtained re-
sults evidence comparable performance underlining the algebraic
equivalence of the two approaches. Experimental results focused
on investigating the effectiveness of the proposed algorithm in
a real scenario. Also in this case, the obtained results evidence
comparable performance . However, according to the performed
computational complexity analysis, the IEIF outperforms the
IEKF anytime the dimension of the state state space is lower
than the dimension of the observations (N < M ). Indeed, this
is the case of the proposed sensor network scenario, where the
dimension of the state space for each node is fixed to N = 2,
while the dimension of the observations is strictly related to the
number of nodes Ω deployed into the environment. Finally, the
same considerations would apply even if a 3-dimensional state
space were considered.
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