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Abstract—In this paper we present an algorithm for the
exploration of an unknown graph by multiple robots, which
is never worse than depth-first search with a single robot. On
trees, we prove that the algorithm is optimal for two robots.
For k robots, the algorithm has an optimal dependence on the
size of the tree, but not on its radius. We believe that the
algorithm performs well on any tree, and this is substantiated by
simulations. For trees with e edges and radiusr, the exploration
time is less than 2e

k
+ (1 + k

r
)k−1 2

k!
rk−1 = 2e

k
+ O((k + r)k−1)

(for r > k, ≤ 2e
k

+ 2rk−1), improving a recent method with
time O( e

log k
+ r) [2], and almost reaching the lower bound

max( 2e
k
, 2r). The model underlying undirected graph exploration

is a set of rooms connected by opaque passages; thus the
algorithm is appropriate for scenarios like indoor navigation
or cave exploration. In this framework, communication can be
realized by bookkeeping devices being dropped by the robots
at explored vertices, the states of which are read and changed
by further visiting robots. Simulations have been performed in
both tree and graph exploration to corroborate the mathematical
results.

Index Terms—Path Planning for Multiple Mobile Robot Sys-
tems, Mapping, Distributed Robot Systems

I. I NTRODUCTION

T HE exploration of a completely unknown environment
by mobile robots has received attention for a long time,

as long as there have been mobile robots, for the first task of
an autonomous robot is to find his way around. This holds
whether the robot is a Mars Rover, a household cleaning
appliance, or on a search-and-rescue mission in a collapsed
building. The problem has been well-studied with many differ-
ent models for asingle robot exploring the environment, under
line-of-sight or distance sensing constraints, in obstacle-dense
or sparse environments, with various motion constraints and
many other model variants. The situation is much less clear
for exploration bymultiple robots.

In this paper, we consider the situation of multiple robots
exploring an obstacle-dense environment, modeled as a graph,
from a single starting vertex. The graph is initially unknown;
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existence of edges becomes known only when a robot sees
one end of the edge from a vertex, and the other end of the
edge becomes known only when the robot actually follows
that edge. This models an environment of sites with passages
between them, where the passages are opaque: from either
end it is not clear where the passage goes. All edges have unit
length, and each robot can follow one edge in each time step.
In particular, this work introduces a strategy that explores any
tree in time 2e

k
+O((k + r)k−1), improving a recent method

with timeO( e
log k

+r) [2]. Our strategy also promises efficient
exploration on general graphs.

The rest of the paper is organized as follows. In Section
II the state of the art for the exploration problem is given.
In Section III, the model details and the proposed algorithm
are described. In Section IV a theoretical analysis concerning
the algorithm performance on general graphs and on trees
is proposed. In Section V, a simulation scenario and results
in both tree and graph-like environments are provided and
finally in Section VI conclusions are drawn and future work
is discussed.

II. RELATED WORK

The previous work on exploration can be roughly divided
into the following classes, according to the underlying model
where the environment can be:

1) a geometric structure represented as union of polygonal
obstacles

2) a geometric structure represented as raster cells
3) a graph structure with uniquely identifiable vertices
4) a graph structure with anonymous vertices which need

to be marked to be recognized
5) a directed graph structure

Each of these models has its motivation, and has been
studied in numerous variants. The first model has been studied
in [3], [4], [5]; it typically assumes that the robot knows
everything within line-of-sight visibility, and is thus related
to Art Gallery problems [6], but differs from watchman tours
[7], [8] in that the polygons are initially unknown. This
model is popular in the computational geometry community,
as an example we cite [9], where a competitive algorithm for
exploring the inside of a simple polygon is given, and [10],
where the optimal competitive ratio is studied.

The second model is more popular in the robotics com-
munity: the environment is viewed as a grid in which some
cells are open, others blocked, and still others unknown, or
more complicated cell states as in evidence grids [11]. This
model is more compatible with diverse types of sensing, like
line-of sight, fixed radius, limited viewing angle, etc. In this



model, even the exploration of a mostly empty plane might
be nontrivial, solved in [12], for instance, by maintainingand
following the frontier of the unexplored terrain; but in an
obstacle-dense environment, that frontier might decompose in
many components.

The third model is the model assumed in this paper: the
environment is given as a graph, nodes corresponding to
locations and edges to passages between the locations. Edges
are assumed to be opaque: we know where an edge leads only
when we have explored it. This is a natural model, both as an
abstraction of obstacle-dense environments that we may divide
into cells corresponding to the graph nodes, and as a model for
state space exploration when the state transitions work in both
directions. The assumption that the vertices are identifiable,
and will be recognized when revisited, is reasonable in this
context, and an essential model property. It has long been
known that depth-first search is an efficient method to explore
any graph by a single robot in this model, at most by a factor
two slower than the optimum exploration strategy. A number
of papers studied the influence of further information, and
decreased the factor-two gap for specific graph classes [13],
[14], or simulated breadth-first search, where the robot always
maintains a short return path to the start vertex [15], [16],[17].

The fourth model, which differs from the third by the nodes
being anonymous, and recognizable only by a marker placed
on them, or by their degree or other abstract graph properties,
comes from the labyrinth exploration setting. The question
for the smallest capabilities, like how many “pebbles” or how
many bits of memory, that allow an abstract robot to find its
way out of a labyrinth, is a classic and much-studied question
in the theory of computation [18], [19], [20], [21], [22]. For
real robots, the question seems irrelevant, since the robotcan
recognize its position by other means like odometry, GPS-
coordinates, or a picture of the node environment.

The fifth model, exploring a directed graph, was studied in
[23]. The situation changes fundamentally from the undirected
graph by the fact that you cannot go back an edge and as
such depth-first search becomes impossible. This model is
equivalent to exploring the state space of an unknown finite
automaton; for any input, there happens some state transition,
initially unknown to us. The states correspond to vertices and
the transitions to directed edges, and we recognize states we
have visited before. This has been proposed in [23] as model
of learning: each action makes a change on the outside world.
Initially, we do not know the effect of the actions, but by
trying the actions and recognizing previous states we acquire
knowledge about the possible actions. This model again has
been studied in theoretical computing [24], [25], [26]. [27]
extends the research to exploring a directed graph by multiple
robots.

Of these different exploration models, only the second
(grid) has received wider study in the context of multi-robot
exploration. A major problem for the grid model is the fusion
of the exploration maps of the individual robots. This problem
does not occur with the graph model, even when starting from
a continuous or a grid model. Thus, deriving a graph as a
representation is a reasonable step [28]. The graph might even
be made physical by dropping nodes in the explored region

[29], [30]. The frontier approach is extended to multiple robots
in [31]. For multi-robot undirected graph exploration, which
is our underlying model, the most relevant paper is [2].

III. T HE ALGORITHM

The proposed Multi-Robot Depth First Search (MR-DFS)
algorithm is a natural adaptation of Depth First Search to
parallel search by multiple robots. The idea of the algorithm is
simple: an edge is considered finished if a robot followed that
edge, and returned by that same edge: by this we assume that
he has explored everything that can be reached by that edge.
As long as there are unfinished edges, the robot selects one
of them to explore; only if all edges have been finished, he
returns by that edge by which he originally entered the vertex.

This natural strategy can be used in many settings; most
relevant to real implementation would be a completely asyn-
chronous movement of the robots. For our analysis, we assume
the robots to move synchronously in time-steps, and we want
to minimize the total number of time-steps before the robots
return to the start vertex and declare the search finished.
In each time-step, we assume that robots standing at the
same vertex have an initial negotiation phase in which they
decide which robot takes which edge. The robots at the
same vertex announce one after another which edge they
will follow, each robot’s decision being based on the edges
which are already taken. Since this is wireless communication
between robots standing at the same vertex, we can assume
it to be instantaneous, and not contribute to the duration of
exploration.

Beyond this local communication, our algorithm requires
only very weak communication between the robots: a robot
arriving at a vertex must be able to see whether this vertex
has been visited before, and if yes, by which edges robots
have left the vertex, and by which edges robots returned. This
communication is classically achieved for human explorersby
leaving chalk-marks on the exits; for robots, the first robot
to enter a vertex could drop a bookkeeping device, e.g., an
RFID, on which every robot who visits this vertex registers
the sequence of his entering and leaving edges. Note that
additional communication appears not useful, since in our
lower bound we allow complete shared information, and the
algorithm almost reaches the lower bound even with this
vertex-local information only. Furthermore, this is the same
communication model used in [2].

Algorithm 1 provides a description of the MR-DFS for
general graphs. On trees, the algorithm becomes simpler since
all robots enter a vertex by the same edge for the first time,
coming from the root, and it cannot happen that a robot
reenters a vertex by a different edge than that by which he
left it. At each vertex, a bookkeeping device is dropped by
the first robot to visit that vertex, and updated by all further
robots on every visit. MR-DFS requires the following minimal
set of information to be stored at each vertex:

• the number of edges converging in this vertex.
• the ID of the robots that have visited this vertex before.
• for each of these robots, the original entrance edge of the

robot



Algorithm 1 Algorithm Multi-robot DFS - general graph
version

1: Let robi be a robot arriving at a vertexv through edgee
2: if robi has been atv before, and the edgee by which he

returned is different from the edge by which he last time
left v then

3: Mark e as finished edge, go back through edgee.
4: else
5: Either v is a new vertex forrobi , or he returned tov

after exploring the component to which edgee leads.
6: if robi has never been atv beforethen
7: Mark e as the original entrance edge ofrobi to v.
8: else
9: robi has been atv before, and returned by the same

edgee by which last time he leftv
10: Mark e as finished edge.
11: end if
12: if there is an edge leavingv that is neither finished, nor

the original entrance edge of any robot tov then
13: Choose one of those edges, preferring edges that have

been used by the least number of other robots before,
and leavev by that edge.

14: else
15: Return fromv by robi ’s original entrance edge.
16: end if
17: end if

Algorithm 2 Algorithm Multi-robot DFS - tree version

1: Let robi be a robot arriving at a vertexv through edgee
2: Eitherv is a new vertex forrobi , or he returned tov after

exploring the subtree to which edgee leads.
3: if v is a new vertex, not visited by any robot beforethen
4: Mark e as the original entrance edge tov.
5: end if
6: if robi has been atv beforethen
7: Mark e as finished edge.
8: end if
9: if there is an edge leavingv that is neither finished, nor

the original entrance edge tov then
10: Choose one of those edges, preferring edges that have

been used by the least number of other robots before,
and leavev by that edge.

11: else
12: Return fromv by the original entrance edge.
13: end if

• For each edge, the IDs of the robots entering and leaving
through that edge

Thus, every edge that is followed by a robot will be recorded,
including the direction, by the bookkeeping devices at either
end. In a real implementation, one has to consider the very
limited storage capacity of RFID tags, and use it most effi-
ciently. If we assume that each robot entering a vertex will
find the same exits, and find these in the same sequence (e.g.,
starting north and enumerating clockwise), we need to store
for each exit only if a robot has entered the vertex through that

exit (so it is either finished or original entry edge), or, if not,
the number of robots that have left through that edge. This
information is sufficient for the algorithm and its analysis;
the actual identity of the robots need not be stored on the
bookkeeping device.

To summarize, each robot running the MR-DFS algorithm
follows essentially a tree, starting at the common start vertex.
If he meets his own tree by a different edge, he immediately
leaves along that edge again (line 2–3, Algorithm 1). If he
meets another robot’s tree, they divide the outgoing edges for
exploration, each choosing some unexplored edges, as long as
possible (line 12–13: Algorithm 1). At any time and for each
robot that has visited a vertex, there is at most one edge by
which that robot left without returning back. If several robots
jointly explore the outgoing edges of a vertex, and a returning
robot finds no unexplored edge any more, he will join another
robot in the branch the other is just exploring. Only if each
edge has been followed by a robot in both directions, the robot
returns from that vertex by his original entrance edge (line7:
Algorithm 1).

Fig. 1 shows two robots exploring a graph from a common
starting vertex, with their path after 5, 8, 11, and 15 steps.The
dotted line represents the path of robotroba, and the dashed
line represents the path of robotrobb.

start
(a)

start
(b)

start
(c)

start
(d)

Fig. 1: Path of two robots after a) 5, b) 8, c) 11, and d) 15
steps

IV. T HEORETICAL ANALYSIS

In this section, a theoretical analysis of the MR-DFS algo-
rithm is proposed. The goal is to provide a characterizationof
the MR-DFS exploration time on general graphs and trees.

A. Preliminaries

Let us consider a graphG = {V,E} modeling an environ-
ment to be explored. The graph is considered to be completely
explored only if every edge is followed by at least one robot
and all the robots return to the starting vertex. This requirement



that the robots return to the starting point at most doubles the
exploration time, since they could just follow their way back.
The number of rounds required in our model to completely
explore the graph is the exploration timetc.

If there is only one robot, the exploration time for a graph is
at leaste = |E|, since every edge needs to be followed. If the
underlying graph is a tree, then every edge the robot follows
outward he must also use coming back, so the exploration time
is at least2e. Classical depth-first search (DFS) does explore
any graph with one robot in2e steps. Thus, the single-robot
scenario has an easy solution, which is optimal for trees and
at most a factor two slower for arbitrary graphs.

Notice that if we aimed to optimize the total number of steps
taken by all robots together, instead of the number of rounds,
then the availability of multiple robots would not help: they
still need to follow2e edges to explore a tree, and we can
do that with a single robot using DFS, so for that measure,
parking all but one robot at the start vertex and using DFS for
that last robot would be an optimal solution.

If there arek robots available, the best we can hope for
is a speed-up of a factork. In each round,k new edges are
explored, so we need at leaste

k
rounds for a general graph,

and 2e
k

rounds for a tree. This speed-up is not always possible.
If the graph is just one long path of lengthr from the starting
vertex, one robot would need to travel all the lengthr and
return back, regardless of the number of robots there might
be available at the common starting vertex. Ifr is the radius
of the graph, i.e., the longest distance from the starting vertex
to any other vertex, then one of the robots has to reach that
vertex at maximum distance, and come back. So we have two
lower bounds for the exploration timetc.

• e/k, since each edge needs to be visited by a robot;
• 2r, since a vertex at maximum distance must be visited.

Therefore, for a given graphG with e edges and radiusr,
the lower bound for the exploration time ismax(e/k, 2r),
andmax(2e/k, 2r) if it is a tree. Since the optimum strategy,
which knows the graph in advance and just has to visit all
edges, takes at least this time, then any algorithm that is within
some factor of that lower bound is competitive and of interest.

B. Analysis on general graphs

In order to characterize the exploration time of the MR-
DFS on general graphs two important properties must be
introduced.

Lemma 1: In the MR-DFS algorithm, each edge is used by
each robot at most once in either direction.

Proof: To see the claim of this lemma, we assume that
robot robi follows the edgeuv from u to v twice, at timet1
and t2. Between these times,robi returns at least once tou.
Each timerobi returns by a different edge thanvu, he will
immediately go back by the edge by which he came (line 2-3,
algorithm 1). Sorobi must return once byvu, but then he
marksuv as finished and will not follow this edge a second
time.

Lemma 2: In the MR-DFS algorithm, all robots finish their
exploration at the same time step.

Proof: To prove this lemma, suppose that a robotrob1

has already returned to the origin and found no further
eligible edge, declaring the search finished, whereasrob2 is
still out at a different vertex at that same time step. The
robot rob2 is connected to the start vertex by his return path
vp, vp−1, . . . , v1, with vp being the current position ofrob2,
v1 the start vertex, andvq−1vq being the original entry edge
of rob2 to vq for q = 2, . . . , p.

The edgev1v2 was not eligible forrob1, otherwiserob1
would have followed that edge. There are two possible reasons
why an edge can become ineligible; either it is finished, with
a robot going and returning by that edge, or it is the original
entry edge of a robot to that vertex. No edge can be the original
entry edge in both directions, since it becomes ineligible in the
opposite direction as soon as it is first used. Since the edges
along the pathv1, v2, . . . , vp are original entry edges of the
robot r2, they cannot be original entry edges in the opposite
direction. Thus every edge along this path is either finished
or eligible. Letvi−1vi be the last edge on the pathv1, . . . , vp
that is finished, and letrob3 be the robot that finished this
edge. Consider the time step whenrob3 finished this edge.
Sincerob2 used the edge before it was finished, the edge is
somewhere on the return path ofrob2 at that time. Ifrob2 is
not at the same vertex asrob3 , then there is an eligible edge
on the return path ofrob2 from vi in the direction ofrob2.
Thus,rob3 would have followed that edge instead of returning
by vivi−1. As such,rob2 androb3 must be at the same vertex
at that time step, they both do not find any eligible edge, and
return together.

The same argument applies to any previous edge along that
path. At the time immediately beforerob2 and rob3 return
together, the edgevi−1vi was still eligible. But then none of
the earlier edges along that path can be finished, since for each
vertex there is still one eligible edge available. Consequently,
rob1 at the start vertex has still an eligible edge available,
giving a contradiction to our initial assumption.

Let us now state the main result concerning the exploration
time of the MR-DFS algorithm on general graphs.

Theorem 1: The algorithm MR-DFS explores any con-
nected graph withe edges, traversing each edge, in at most
2e steps.

Proof: The proof of the theorem is a consequence of the
previous lemmas. In particular, according to lemma 1 a robot
uses each edge at most once in each direction. Therefore, in
the worst case scenario, all the robots are going to traverse2e
edges. Furthermore according to lemma 2 all the robots finish
the exploration at the same time. At this point, since at each
step only one edge can be traversed, the number of edges that
each robot can traverse is at most2e.

Remark 1: An important consequence of Theorem 1 is that
the MR-DFS algorithm explores any graphcompletely, and is



never worse than classical single-robot DFS.

C. Analysis on trees

The proposed MR-DFS algorithm is on trees generally much
better than a single-robot DFS.

(a)

start

(b)

start

(c)

start

(d)

start

Fig. 2: Path of two robots after a) 5, b) 8, and c) 12 steps on a
tree of degree 4. d) Shows the edges traversed by both robots

Fig. 2 shows two robots exploring a tree of degree 4,
showing the state after 5, 8, and 12 steps, and the edges used
by both robots. Again, the dotted line represents the path of
robot rob1, and the dashed line the path of robotrob2. At the
beginning, each robot enters a branch that has not been used
before. Only the last branch is entered by both robots. The
robot that entered the last branch second (rob2) meets after
two steps the returning robot (rob1), that entered the branch
first, and they both return together to the starting vertex.

The fundamental property of the MR-DFS algorithm on
trees is the decreasing branching property as described in the
following lemma. To this end, let us first define an incoming
edge of a vertex as the edge in the direction of the starting
vertex, and all other edges as outgoing edges.

Lemma 3: The edges used by several robots form a subtree.
If a vertex is visited byj robots, then among the outgoing
edges there is at most one edge that is taken by allj robots,
and at mosti+1 edges that are taken by at leastj− i robots,
for i = 0, . . . , j − 1.

Proof: To prove this lemma, we consider a vertexv
that hasd outgoing edges and is entered byj robots. Fig. 3
illustrates the worst-case situation of the lemma ford = j = 4.
Each robot that enters this vertex chooses an outgoing edge,
explores a subtree, returns to the vertex and chooses another
edge, and so on, until it finds no further edges left. Each
time it returns from an edge, that edge becomes finished and
unavailable for all robots which have not already used it. We
number the outgoing edgese1, . . . , ed in the sequence in which
robots return from that edge. Thus the first robot to return tov
blockse1 for all those robots which have not already entered

1

2

3

4

(a)

1,2

3

4

(b)

1,2

3

4
(c)

1,2,3

4(d)

1,2,3

4(e)
1,2,3,4

(f)

Fig. 3: Decreasing branching property: worst-case scenario.
Path of the robots after a) 1 step, b) 3 steps, c) 6 steps, d) 8
steps, e) 10 steps, and f) 12 steps

it. Since other robots can have enterede1 only after all other
edges had been entered by at least one robot, then

• if d ≥ j, no other robot can have enterede1, so e1 is
used by only one robot;

• elsej > d, so at mostj − d other robots enterede1, and
e1 is used by at mostj − d+ 1 robots.

In the same way, for1 ≤ a ≤ d the edgeea is blocked for
all robots that have not entered it at the time the robot on
it returns. Any further robot can have entered this edge only
after all d − 1 other edges have been entered by at least one
robot; available for that are thej − 1 other robots, which are
availablea − 1 additional times from their previous returns.
Thus

• if d− 1 ≥ j+ a− 2, no other robot can have enteredea,
so ea is used by only one robot;

• elsed− 1 < j+a− 2, then at most(j+a− 2)− (d− 1)
other robots enteredea, andea is used by at mostj+a−d
robots.

So if j ≥ d, then thed outgoing edges are used by at most
j, j−1, . . . , j−d+1 robots. Ifj < d, then the outgoing edges
are used by at mostj, j − 1, . . . , 1, 1, . . . , 1, 1, 1 robots. This
completes the proof of the Lemma.

Let us now introduce the concept ofexcess multiplicity
µ(ei) of an edgeei as the number of additional robots after
the first that use that edge. By Lemma 1, each robot uses
each edge at most twice, going out and returning, so for each
edgeei we have0 ≤ µ(ei) ≤ k − 1, and the edge is used
exactly 2 + 2µ(ei) times. Fig. 4 shows the multiplicity of a
subtree with 3 outgoing edges being explored by 4 robots.
The excess multiplicity plays a key role to define an upper
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Fig. 4: Multiplicity of a subtree with 3 edges being explored
by 4 robots

bound for the exploration time of the MR-DFS algorithm as
described by the following lemma.

Lemma 4: The time that the MR-DFS algorithm takes to
explore a tree withe edges byk robots is

tc =
1

k

(

2e+ 2
∑

ei

µ(ei)

)

. (1)

Proof: To obtain the bound on the total exploration time,
we just add up the work done by each robot, and divide by
k: since all the robots finish at the same time, we just count
the total number of edges walked by the robots when they
finish. Each edge was taken at least once in each direction,
plus 2

∑

ei
µ(ei) additional edges, taken by several robots

(multiplicity).

Lemma 5: The functionf(k, r) defined byf(k, 1) =
(

k
2

)

and the recursion

f(k, r) =

(

k

2

)

+

k
∑

i=2

f(i, r − 1) (2)

is

f(k, r) =

(

k + r

k − 1

)

− k. (3)

Proof: We solve the recursion by repeated application of
the binomial sum

(

a

a

)

+

(

a+ 1

a

)

+ · · ·+

(

b

a

)

=

(

b+ 1

a+ 1

)

(4)

We have

f(k, 2) =

(

k

2

)

+

k
∑

i=2

f(i, 1)

=

(

k

2

)

+
k
∑

i=2

(

i

2

)

=

(

k

2

)

+

(

k + 1

3

)

.

We apply this again and find

f(k, 3) =

(

k

2

)

+

k
∑

i=2

f(i, 2)

=

(

k

2

)

+

k
∑

i=2

((

i

2

)

+

(

i+ 1

3

))

=

(

k

2

)

+
k
∑

i=2

(

i

2

)

+
k+1
∑

i=3

(

i

3

)

=

(

k

2

)

+

(

k + 1

3

)

+

(

k + 2

4

)

.

From this, we prove

f(k, r) =

(

k

2

)

+

(

k + 1

3

)

+ · · ·+

(

k + r − 1

r + 1

)

(5)

by induction, using

f(k, r) =

(

k

2

)

+

k
∑

i=2

f(i, r − 1)

=

(

k

2

)

+

k
∑

i=2

r−2
∑

j=0

(

i+ j

2 + j

)

=

(

k

2

)

+

r−2
∑

j=0

k
∑

i=2

(

i+ j

2 + j

)

=

(

k

2

)

+

r−2
∑

j=0

(

k + 1 + j

3 + j

)

=

r−1
∑

j=0

(

k + j

2 + j

)

.

Finally, we reduce this sum by

f(k, r) =

(

k

2

)

+

(

k + 1

3

)

+ · · ·+

(

k + r − 1

r + 1

)

=

(

k

k − 2

)

+

(

k + 1

k − 2

)

+ · · ·+

(

k + r − 1

k − 2

)

=

(

k + r

k − 1

)

−

(

k − 1

k − 2

)

−

(

k − 2

k − 2

)

=

(

k + r

k − 1

)

− (k − 1)− 1.

Let us now state the main result concerning the exploration
time of the MR-DFS algorithm on trees.



Theorem 2: The MR-DFS algorithm explores a tree withe
edges and radiusr usingk robots in time is at most

min

(

2e,
2e

k
+

2

k

(

k + r

k − 1

))

<
2e

k
+

(

1 +
k

r

)k−1
2

k!
rk−1.

(6)

Proof: The proof comes from the observation that the
maximum totalexcess multiplicityof all multiply used edges
together is the sum of the excess multiplicities of the subtrees
entered from the root, plus the excess multiplicities on the
edges from the root to those subtrees. In a tree of radiusr, each
subtree entered from the root has radius at mostr− 1, and by
Lemma 3 there is at most one subtree entered by allk robots,
at most two subtrees entered byk−1 or k robots, etc., and only
at mostk− 1 subtrees are entered by two or more robots. All
other subtrees entered from the root are entered only by one
robot, so they do not contribute any excess multiplicity. Thus
the maximum total excess multiplicityg(k, r) as a function of
the number of robotsk and the radiusr, satisfies the recursion

g(k, r) ≤

(

k

2

)

+ g(k, r − 1) + g(k − 1, r − 1) +

g(k − 2, r − 1) + · · ·+ g(2, r − 1)

with the boundary conditiong(k, 1) = (k − 1) + (k − 2) +
. . . + 1 =

(

k
2

)

. This is the same recursion as the one solved
in Lemma 5, only with≤ instead of=; so g(k, r) ≤ f(k, r).
Thus the total excess multiplicity is bounded byg(k, r) ≤
(

k+r

k−1

)

− k. From Lemma 4 this bounds the exploration time
as

tc =
1

k
(2e+ 2f(k, r)) <

2e

k
+

2

k

(

k + r

k − 1

)

. (7)

To show the growth rate of this expression fork small andr
large, we observe

1

k

(

k + r

k − 1

)

=
(k + r)(k − 1 + r) · · · (2 + r)

k(k − 1)!

<
(k + r)k−1

k!
=

(

1 +
k

r

)k−1
1

k!
rk−1.

For r ≥ k this is less than2
k−1

k!
rk−1 ≤ rk−1; indeed, the

coefficient ofrk−1 is rapidly decreasing for largerk andr ≥ k.

Remark 2: In its dependence one, this is optimal and
improves theO( e

log k
+ r)-algorithm of [2]. The dependence

on r, however, is not. This is an interesting bound for trees
with many edges and small radius (trees with high branching
factors). The bound on the totalexcess multiplicityused in the
proof above views it only as a function ofr andk, and leaves
e open. This bound can be reached, but only ife is very large
compared tor. To obtain a further improvement along these
lines in the bound would require an analysis withe as third
parameter. Also, the bound in Lemma 3 can be improved if the
number of robots is larger than the degree: ifa robots reach a
vertex with two outgoing edges before the first of these robot
returns to that vertex, they will have distributed equally over
the two edges until one of the two edges is finished by the

first returning robot. At that time,1
2
a robots will have entered

each branch, so the total multiplicities of the edges are at most
a and 1

2
a, which is much better thana anda− 1 for largea.

For small number of robots, no improvement can be expected,
as the next theorem shows.

For two robots (k = 2) the following Theorem 2 shows
a type of optimality of MR-DFS: no strategy can guarantee
a better competitive ratio against an optimal explorer, who
already knows the tree and always makes the best choices.

Theorem 3: The MR-DFS algorithm with two robots ex-
plores a tree withe edges and radiusr in time at moste+ r.
This is at most3

2
of the optimum exploration time, and no

algorithm for two robots guarantees a factor less that3
2
.

Proof: For two robots (k = 2) Lemma 3 implies that
the subtree used by both robots does not branch, so it is a
path with length at mostr. Thus,

∑

i
µ(ei) ≤ r. By Lemma

4, the exploration time is at most1
2
(2e + 2r) = e + r,

as claimed by the theorem. Furthermore, as explained in
Section IV-A, the general lower bound of the exploration time
of a tree using two robots ismax(2e

2
, 2r) = max(e, 2r), and

e+ r ≤ 3
2
max(e, 2r):

• for r ≤ 1
2
e we have thatmax(e, 2r) = e ande+ r ≤ 3

2
e,

• for r ≥ 1
2
e we havemax(e, 2r) = 2r ande+ r ≤ 3r =

3
2
2r.

This proves the upper bounds of the theorem.
To see that no algorithm can guarantee a better approx-

imation ratio than3
2

for the optimum exploration time, we
use an adversarial construction. Consider a graph which has
three branches, two of lengtht and one of length2t. This
tree can be optimally explored by two robots in time4t: one
robot explores the two short branches, the other the one long
branch. But any algorithm finds out whether a branch is a
short branch or a long branch only after a robot has reached
the end of the branch. Thus an adversary who reveals the
graph as it is explored can always make the last branch to be
explored a long branch; so any algorithm can be forced to take
exploration time at least6t. Thus no algorithm for two robots
gives a better competitiveness ratio than the3

2
achieved by the

MR-DFS algorithm.

Remark 3: The adversarial construction described above is
the special case of a general construction described in [32],
[2], which shows that withk robots, no strategy can guarantee
a competitive factor better than2− 1

k
.

V. SIMULATION RESULTS

Two set of simulations were performed in order to corrob-
orate the most important results of this paper: Theorem 2 and
Theorem 3. To do so, the algorithm was run in three different
scenarios:long, wide andfull N-ary trees (from now on we will
refer tofull N-ary trees as simply “N-ary trees”). Examples of
these scenarios are shown in figure 5. The size of the tree was
increased (in long and wide trees) by increasing the number of



Radius of root=33,  Edges=100

(a) Long tree

Radius of root=5,  Edges=100

(b) Wide tree

Radius of root=4,  Edges=156

(c) N-ary tree (N=5)

Fig. 5: Example of different tree generation methods used for
the simulations.

edges. In N-ary trees, the size of the tree was defined by the
number of childrenN that each vertex was allowed to have
and by the radius of the tree.

The way the robots were distributed in a vertex is as
follows: assumek robots arrive at a vertexv that hasev
downward unexplored edges. Thek robots will distribute
themselves in the most homogeneous way possible where the
maximum difference in the number of robots in every edge
is equal to one. As an example consider 5 robots arriving at
a vertex with 3 unexplored downward edges: two of those
edges will be taken by 2 robots and the last edge will be
taken by only one robot. The idea is to obtain the maximum
parallelism in the exploration process. For long and wide trees,
since the same number of edgese can produce very different
configurations of trees (each one with a different exploration
time), we performed 100 runs of the simulation per each value
of e. The results of the first set of simulations are shown in
Fig. 6 and Fig. 7. The plots show the upper bound defined
by Theorem 2, the lower bound (max(2e/k, 2r)) and the
exploration time (mean of 100 runs) due to different numbers
of robots exploring the tree.

For N-ary trees, only one simulation per tree configuration
was run since, due to the symmetry of the tree, the algorithm
will make the robots explore the tree in the same way all the
time. The plots in Fig. 8 show the upper bound (straight line)
and exploration time (dashed line) for this type of tree when
the exploration is performed by different number of robots
from 2 to 6. The results for lower bound were not shown in
order to simplify the reading of the plots.

From the results of this set of simulations (Fig. 6 to Fig. 8)
we can observe that the bounds of exploration, as defined in
this paper, hold at all times. An interesting result is shown
in Fig. 6 and Fig. 7 when using 2 robots: the curve of
the upper bound of Theorem 2 matches tightly that of the
actual exploration time of the algorithm. In particular in wide
trees, the analysis presented in section IV produces boundsof
exploration that perfectly enclose the exploration time. Recall
that tightness on the bounds of exploration is desired in order
to perform estimations on the actual exploration time when no
explicit expression for this exploration time has been found
(like in this case).
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Fig. 6: Comparison of exploration times and bounds of explo-
ration on long trees of increasing number of vertices using a)
2, b) 3, c) 5, and d) 20 robots.
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Fig. 7: Comparison of exploration times and bounds of explo-
ration on wide trees of increasing number of vertices using a)
2, b) 3, c) 5, and d) 20 robots.
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Fig. 8: Comparison between upper bound (straight line) and
exploration time (dashed line) on N-ary trees of increasing
radius and different number of robots. Subfigures from top to
bottom respectively show the curves for N=2, N=3 and N=5.

From the results on wide trees (Fig. 7) it is evident that our
lower bound is very close to the exploration time. As such, it
suggest the existence of a linear function ofk, r and e that
actually defines the exploration time or that at least upper-
bounds it more tightly. The results on all trees corroborate
Remark 2, since our upper bound is indeed prevalent on trees
with many edges and small radius (wide trees), particularly
when using a small number of robots. For long trees, the upper
bound is basically defined by2e.

The results on all trees also show that our MR-DFS al-
gorithm is effective in reducing the exploration time when
increasing the number of robots and that this exploration
time is at all times better than the single robot depth first

search approach (a desired characteristic of any multi-robot
strategy). Lastly, we can observe from the simulations that
when increasing the number of robots, the exploration time of
the algorithm is brought down closer to the lower bound. That
is, the exploration time is reduced closer to the optimal time
of exploration.

Fig. 9 shows the behavior of the algorithm on a tree with
a fixed configuration when using up to 15 robots. The fixed
configuration corresponds to a N-ary tree (N=7) and a radius
of 5. The plot clearly shows how the exploration time is
consistently reduced when more robots are included in the
system.
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Fig. 9: Exploration time for increasing number of robots in a
tree with a fixed configuration (N-ary tree with N=7 and r=5).

A second set of simulations was performed to corroborate
the statement of Theorem 3: with 2 robots the upper bound
of the exploration time ise+ r. Fig. 10 shows the results for
long and wide trees.
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Fig. 10: Comparison between the exploration time and the
upper bound defined in Theorem 3 on long (left) and wide
(right) trees of increasing number of edges using 2 robots.

The plots show that the upper bound holds at all times
and that, as expected, it is tight with respect to the actual
exploration time. Fig. 10 also allows us to observe in detail
the performance of the algorithm using two robots and how
it contrasts with the result of single robot DFS: in wide trees
the average reduction in the exploration time is approximately
50%, whereas in long trees the reduction averages 30%.



VI. CONCLUSIONS

In this paper, we have proposed an algorithm multi-robot
DFS for the exploration of an unknown undirected graph,
which is guaranteed to succeed on any graph, never worse than
classical single-robot DFS, and which on trees we have proved
to be optimal for two robots, and having optimal dependence
on the size of the tree, but not its radius, fork robots. In
this specific graph exploration scenario, the robots are initially
all located at a common starting vertex, they discover the
existence of an edge only when they see one end of it, and
know where an edge leads only when they have followed it.
Vertices that have been visited before are recognized.

The proposed algorithm needs only a local communication
model, where communication happens only between a robot,
and a bookkeeping device left at that node, or between robots
standing simultaneously at the same node. So the robots are
almost completely unaware of the actions of the other robots.
The bookkeeping devices are not in contact with each other;
they could be replaced by a piece of chalk leaving marks
on the possible exits of the rooms. This is a much weaker
communication assumption than global shared information;if
global shared information is available, no bookkeeping devices
are needed. The exploration algorithm will even succeed if
some robots are lost or destroyed. As long as there are edges
that are not marked as finished, some other robot will follow
up that edge. If there is at least one robot left, only an incorrect
finished mark can keep a vertex from being visited. Destroying
or manipulating the marks on the bookkeeping devices can
prevent the exploration from success: erasure of finished marks
can keep the algorithm from terminating.

In addition to our theoretic analysis, several simulations
have been performed in order to corroborate the mathematical
results previously described. The result of the simulations
show that our analysis on trees produces upper and lower
bounds on the exploration time that are close to the actual
exploration time of the algorithm, particularly when consider-
ing two robots. The simulations also show that the algorithm
effectively reduces the exploration time when the number of
robots is increased and that this exploration time is at all
times better than when using the single-robot depth first search
approach. Moreover, it can be seen how the performance of
the algorithm reaches closer to the optimal exploration time
when more robots are used to perform the exploration.

The analysis of this algorithm was only for trees; the most
important next theoretical problem is to provide an analysis
for general graphs. No bounds on multi-robot exploration of
general graphs in this scenario are known. The bound for trees
could be improved, perhaps even giving optimality for further
small numbers of robots. And the most important problem for
the practical applicability of this algorithm is to remove the
assumption of robot movement in time-steps: the real robot
movement is asynchronous, and the algorithm itself makes no
assumption on synchronization; that is artifact of the analysis.
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