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Abstract—In this paper we present an algorithm for the existence of edges becomes known only when a robot sees
exploration of an unknown graph by multiple robots, which  one end of the edge from a vertex, and the other end of the
is never worse than depth-first search with a single robot. On edge becomes known only when the robot actually follows
trees, we prove that the algorithm is optimal for two robots. . . . )

For k robots, the algorithm has an optimal dependence on the that edge. This models an environment of sites with passages
size of the tree, but not on its radius. We believe that the between them, where the passages are opaque: from either
algorithm performs well on any tree, and this is substantiaed by end it is not clear where the passage goes. All edges have unit
simulations. For trees with e edges and radiusr, the exploration length, and each robot can follow one edge in each time step.
time is less than% + (1 + )" ' 7" = 2 + O((k +7)"™") |y pbarticular, this work introduces a strategy that expicae

2¢ =1y, improvi hod with il 1y egy Y
(for v >k, < 54 2r"" ), improving a recent met tree in time2¢ + O((k + r)*~!), improving a recent method

time O(= +r) [2], and almost reaching the lower bound = .. . . -
max (22, 25). The model underlying undirected graph exploration with time O(@ +7) [2]. Our strategy also promises efficient

is a set of rooms connected by opaque passages; thus thé&Xploration on general graphs.

algorithm is appropriate for scenarios like indoor navigation The rest of the paper is organized as follows. In Section
or cave exploration. In this framework, communication can & || the state of the art for the exploration problem is given.
realized by bookkeeping devices being dropped by the robots |y gection |11, the model details and the proposed algorithm

at explored vertices, the states of which are read and chande . . . . :
by further visiting robots. Simulations have been performel in are described. In Section IV a theoretical analysis coriegrn

both tree and graph exploration to corroborate the mathematcal  the algorithm performance on general graphs and on trees

results. is proposed. In Section V, a simulation scenario and results
Index Terms—Path Planning for Multiple Mobile Robot Sys- 1 both tree and graph-like environments are provided and
tems, Mapping, Distributed Robot Systems finally in Section VI conclusions are drawn and future work
is discussed.

I. INTRODUCTION
II. RELATED WORK

HE exploration of a completely unknown environment : . -
b . . . . The previous work on exploration can be roughly divided
y mobile robots has received attention for a long time

as long as there have been mobile robots, for the first task Tto the following classes, according to the underlying eiod

an autonomous robot is to find his way around. This hold% ere the envm_anment can be: _

whether the robot is a Mars Rover, a household cleaningl) a geometric structure represented as union of polygonal
appliance, or on a search-and-rescue mission in a collapsed obstacles

building. The problem has been well-studied with many diffe 2) & geometric structure represented as raster cells

ent models for aingle robot exploring the environment, under 3) @ graph structure with uniquely identifiable vertices
line-of-sight or distance sensing constraints, in obstaignse ~ 4) @ graph structure with anonymous vertices which need
or sparse environments, with various motion constraints an 0 be marked to be recognized

many other model variants. The situation is much less clear®) & directed graph structure

for exploration bymultiple robots.

In this paper, we consider the situation of multiple robots Each of these models has its motivation, and has been
exploring an obstacle-dense environment, modeled as & gregiudied in numerous variants. The first model has been studie
from a single starting vertex. The graph is initially unkmgw in [3], [4], [5]; it typically assumes that the robot knows

everything within line-of-sight visibility, and is thus leted
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model, even the exploration of a mostly empty plane migf29], [30]. The frontier approach is extended to multipleots
be nontrivial, solved in [12], for instance, by maintainiagd in [31]. For multi-robot undirected graph exploration, whi
following the frontier of the unexplored terrain; but in ars our underlying model, the most relevant paper is [2].
obstacle-dense environment, that frontier might decomjios
many components. o [1l. THE ALGORITHM
The third model is the model assumed in this paper: the ) )
environment is given as a graph, nodes corresponding tol "€ Proposed Multi-Robot Depth First Search (MR-DFS)
locations and edges to passages between the locationss EQ@Prithm is a natural adaptation of Depth First Search to
are assumed to be opaque: we know where an edge leads @ﬁﬁ@llel search b)_/ multlple robo'Fs._ The |Qea of the algarita
when we have explored it. This is a natural model, both as 8fPle: an edge is considered finished if a robot followed tha
abstraction of obstacle-dense environments that we magedivedge, and returned by that same edge: by this we assume that
into cells corresponding to the graph nodes, and as a model#§ has explored everything that can be reached by that edge.
state space exploration when the state transitions worktin bAS long as there are unfinished edges, the robot selects one
directions. The assumption that the vertices are identifiab®f them to explore; only if all edges have been finished, he
and will be recognized when revisited, is reasonable in tHig{Urns by that edge by which he originally entered the erte
context, and an essential model property. It has long beenlhis natural strategy can be used in many settings; most
known that depth-first search is an efficient method to explofélévant to real implementation would be a completely asyn-
any graph by a single robot in this model, at most by a fact§pronous movement of the robots. I_:or_our analysis, we assume
two slower than the optimum exploration strategy. A numb&p€ robots to move synchronously in time-steps, and we want
of papers studied the influence of further information, arf@ Minimize the total number of time-steps before the robots
decreased the factor-two gap for specific graph classes [1§furn to .the start vertex and declare the search finished.
[14], or simulated breadth-first search, where the roboagéw N €ach time-step, we assume that robots standing at the
maintains a short return path to the start vertex [15], [[6]]. Same verte_x have an initial negotlatlon phase in which they
The fourth model, which differs from the third by the node§€cide which robot takes which edge. The robots at the
being anonymous, and recognizable only by a marker placg®Me vertex announce one after another which edge they
on them, or by their degree or other abstract graph progerti#ill follow, each robot's decision being based on the edges
comes from the labyrinth exploration setting. The questidﬁhlch are already take_n. Since this is wireless commurtnati
for the smallest capabilities, like how many “pebbles” omho Petween robots standing at the same vertex, we can assume
many bits of memory, that allow an abstract robot to find if§ to be _mstantaneous, and not contribute to the duration of
way out of a labyrinth, is a classic and much-studied quaesti§xploration.
in the theory of computation [18], [19], [20], [21], [22]. Fo Beyond this local communication, our algorithm requires
real robots, the question seems irrelevant, since the rcdyot ONly very weak communication between the robots: a robot
recognize its position by other means like Odometry' Gpg[riVing at a vertex must be able to see whether this vertex
coordinates, or a picture of the node environment. has been visited before, and if yes, by which edges robots
The fifth model, exploring a directed graph, was studied fpave left the vertex, and by which edges robots returneds Thi
[23]. The situation changes fundamentally from the undéec communication is classically achieved for human explobgrs
graph by the fact that you cannot go back an edge and lgaving chalk-marks on the exits; for robots, the first robot
such depth-first search becomes impossible. This modeltgsenter a vertex could drop a bookkeeping device, e.g., an
equivalent to exploring the state space of an unknown fini@ID, on which every robot who visits this vertex registers
automaton; for any input, there happens some state tramsitith® sequence of his entering and leaving edges. Note that
initially unknown to us. The states correspond to vertiaes a@dditional communication appears not useful, since in our
the transitions to directed edges, and we recognize states'@wer bound we allow complete shared information, and the
have visited before. This has been proposed in [23] as moddgorithm almost reaches the lower bound even with this
of learning: each action makes a change on the outside woM@gtex-local information only. Furthermore, this is thensa
Initially, we do not know the effect of the actions, but byfommunication model used in [2].
trying the actions and recognizing previous states we aequi Algorithm 1 provides a description of the MR-DFS for
knowledge about the possible actions. This model again Higheral graphs. On trees, the algorithm becomes simplee sin
been studied in theoretical computing [24], [25], [26]. ][27all robots enter a vertex by the same edge for the first time,
extends the research to exploring a directed graph by nrultigoMing from the root, and it cannot happen that a robot
robots. reenters a vertex by a different edge than that by which he
Of these different exploration models, only the secorl@ft it. At each vertex, a bookkeeping device is dropped by
(grid) has received wider study in the context of multi-robghe first robot to visit that vertex, and updated by all furthe
exploration. A major problem for the grid model is the fusiofiobots on every visit. MR-DFS requires the following minima
of the exploration maps of the individual robots. This peshl Set of information to be stored at each vertex:
does not occur with the graph model, even when starting frome the number of edges converging in this vertex.
a continuous or a grid model. Thus, deriving a graph as ae the ID of the robots that have visited this vertex before.
representation is a reasonable step [28]. The graph migimt ev « for each of these robots, the original entrance edge of the
be made physical by dropping nodes in the explored region robot



Algorithm 1 Algorithm Multi-robot DFS - general graph exit (so it is either finished or original entry edge), or, &t
version the number of robots that have left through that edge. This
1: Let rob; be a robot arriving at a vertex through edge:  information is sufficient for the algorithm and its analysis
2: if rob; has been at before, and the edgeby which he the actual identity of the robots need not be stored on the

returned is different from the edge by which he last timeookkeeping device.

left v then To summarize, each robot running the MR-DFS algorithm
3. Mark e as finished edge, go back through edge follows essentially a tree, starting at the common startexer
4: else If he meets his own tree by a different edge, he immediately
5.  Eitherv is a new vertex forrob;, or he returned t@ leaves along that edge again (line 2—-3, Algorithm 1). If he
after exploring the component to which edgéeads. meets another robot’s tree, they divide the outgoing edges f
6: if rob; has never been at beforethen exploration, each choosing some unexplored edges, as fong a
7 Mark e as the original entrance edge afb; to v.  possible (line 12-13: Algorithm 1). At any time and for each
8: else robot that has visited a vertex, there is at most one edge by
9 rob; has been ab before, and returned by the samevhich that robot left without returning back. If several oib
edgee by which last time he lef jointly explore the outgoing edges of a vertex, and a retgni
10: Mark e as finished edge. robot finds no unexplored edge any more, he will join another
11:  end if robot in the branch the other is just exploring. Only if each
12:  if there is an edge leavingthat is neither finished, nor edge has been followed by a robot in both directions, thetrobo
the original entrance edge of any robotudhen returns from that vertex by his original entrance edge (ine
13: Choose one of those edges, preferring edges that hasgorithm 1).
been used by the least number of other robots before Fig. 1 shows two robots exploring a graph from a common
and leavev by that edge. starting vertex, with their path after 5, 8, 11, and 15 st@p®
14. else dotted line represents the path of robeb,, and the dashed
15: Return fromwv by rob;’s original entrance edge. line represents the path of robatb;,.
16:  end if
17: end if

Algorithm 2 Algorithm Multi-robot DFS - tree version

1: Let rob; be a robot arriving at a vertex through edge

2: Eitherwv is a new vertex forob;, or he returned te after
exploring the subtree to which edgdeads. g

. if v is a new vertex, not visited by any robot befdhen start @ start ®)
Mark e as the original entrance edge o

end if

. if rob; has been at beforethen

Mark e as finished edge.

- end if

. if there is an edge leaving that is neither finished, nor
the original entrance edge tothen

10 Choose one of those edges, preferring edges that have © :
start start

been used by the least number of other robots before, © %)

and leavev by that edge. )
11: else Fig. 1: Path of two robots after a) 5, b) 8, ¢) 11, and d) 15
12:  Return fromv by the original entrance edge. steps
13: end if

IV. THEORETICAL ANALYSIS

« For each edge, the IDs of the robots entering and leaving ) ) ) )
In this section, a theoretical analysis of the MR-DFS algo-
through that edge _ _ . . -
rithm is proposed. The goal is to provide a characterization

Thus, every edge that is followed by a robot will be recordeg, . MR-DES exploration time on general graphs and trees.
including the direction, by the bookkeeping devices ategith

end. In a real implementation, one has to consider the very o

limited storage capacity of RFID tags, and use it most efff Prélimnaries

ciently. If we assume that each robot entering a vertex will Let us consider a grapé = {V, E} modeling an environ-
find the same exits, and find these in the same sequence (emgnt to be explored. The graph is considered to be completely
starting north and enumerating clockwise), we need to starplored only if every edge is followed by at least one robot
for each exit only if a robot has entered the vertex througth thand all the robots return to the starting vertex. This rezyugnt



that the robots return to the starting point at most doulllest Lemma 2: In the MR-DFS algorithm, all robots finish their
exploration time, since they could just follow their way kac exploration at the same time step.

The number of rounds required in our model to completely

explore the graph is the exploration time Proof: To prove this lemma, suppose that a robot,

If there is only one robot, the exploration time for a graph isas already returned to the origin and found no further
at leaste = | E|, since every edge needs to be followed. If theligible edge, declaring the search finished, wheneas is
underlying graph is a tree, then every edge the robot followsll out at a different vertex at that same time step. The
outward he must also use coming back, so the exploration timaot rob, is connected to the start vertex by his return path
is at least2e. Classical depth-first search (DFS) does explorg,, v,_1, ..., v, with v, being the current position ofobs,
any graph with one robot iRe steps. Thus, the single-robotv; the start vertex, and,_;v, being the original entry edge
scenario has an easy solution, which is optimal for trees aofirob, to v, for g =2,...,p.
at most a factor two slower for arbitrary graphs. The edgevive, was not eligible forrob,, otherwiserob;

Notice that if we aimed to optimize the total number of stepsould have followed that edge. There are two possible reason
taken by all robots together, instead of the number of roundghy an edge can become ineligible; either it is finished, with
then the availability of multiple robots would not help: yhe a robot going and returning by that edge, or it is the original
still need to follow2e edges to explore a tree, and we caentry edge of a robot to that vertex. No edge can be the otigina
do that with a single robot using DFS, so for that measurentry edge in both directions, since it becomes ineligibleéne
parking all but one robot at the start vertex and using DFS fopposite direction as soon as it is first used. Since the edges
that last robot would be an optimal solution. along the pathvi,vq,...,v, are original entry edges of the

If there arek robots available, the best we can hope faiobot ., they cannot be original entry edges in the opposite
is a speed-up of a factdr. In each roundk new edges are direction. Thus every edge along this path is either finished
explored, so we need at leastrounds for a general graph,or eligible. Letv; ;v; be the last edge on the path, ..., v,
andz—lj rounds for a tree. This speed-up is not always possibteat is finished, and letobs be the robot that finished this
If the graph is just one long path of lengthfrom the starting edge. Consider the time step whewbs finished this edge.
vertex, one robot would need to travel all the lengtland Since rob, used the edge before it was finished, the edge is
return back, regardless of the number of robots there miggtmewhere on the return path afb, at that time. Ifrobs is
be available at the common starting vertexr Iis the radius not at the same vertex asbs, then there is an eligible edge
of the graph, i.e., the longest distance from the startintexe on the return path ofob, from v; in the direction ofrob,.
to any other vertex, then one of the robots has to reach tfAdius,r0bs; would have followed that edge instead of returning
vertex at maximum distance, and come back. So we have tiwpv;v; 1. As such,roby androbs must be at the same vertex
lower bounds for the exploration ting. at that time step, they both do not find any eligible edge, and

« ¢/k, since each edge needs to be visited by a robot; return together. _ _
« 2r, since a vertex at maximum distance must be visited. The same argument applies to any previous edge along that
Therefore, for a given graphi with ¢ edges and radius, path. At the time immediately beforenb, and robs return

the lower bound for the exploration time isnax(e/k, 2r), together, the edge;_;v; was still eligible..l??ut then.none of
andmax(2e/k, 2r) if it is a tree. Since the optimum strategy,the earlier ed_ges.along thgt.path can be f|_n|shed, since ¢br ea
prtex there is still one eligible edge available. Consetjye

which knows the graph in advance and just has to visit f ; <« :
edges, takes at least this time, then any algorithm thattswi 7001 @t the start vertex has still an eligible edge available,
some factor of that lower bound is competitive and of interedVing a contradiction to our initial assumption. u

_ Let us now state the main result concerning the exploration
B. Analysis on general graphs time of the MR-DFS algorithm on general graphs.
In order to characterize the exploration time of the MR-
DFS on general graphs two important properties must beTheorem 1. The algorithm MR-DFS explores any con-

introduced. nected graph witke edges, traversing each edge, in at most
2e steps.
Lemma 1: In the MR-DFS algorithm, each edge is used by
each robot at most once in either direction. Proof: The proof of the theorem is a consequence of the

previous lemmas. In particular, according to lemma 1 a robot
Proof: To see the claim of this lemma, we assume thaises each edge at most once in each direction. Therefore, in
robot rob; follows the edgeuv from u to v twice, at timet;  the worst case scenario, all the robots are going to traerse
andt,. Between these timespb; returns at least once to. edges. Furthermore according to lemma 2 all the robots finish
Each timerob; returns by a different edge than;, he will the exploration at the same time. At this point, since at each
immediately go back by the edge by which he came (line 2-8tep only one edge can be traversed, the number of edges that

algorithm 1). Sorob;, must return once bywu, but then he each robot can traverse is at mast ]
markswuv as finished and will not follow this edge a second
time. [ ] Remark 1: An important consequence of Theorem 1 is that

the MR-DFS algorithm explores any grapbmpletely, and is



never worse than classical single-robot DFS.

C. Analysis on trees 3 3

The proposed MR-DFS algorithm is on trees generally much 4 4
better than a single-robot DFS. @) b)

3
1,2 ,2,3
(©) (d)
start
1,2,
(e) ®
1,2,3,4
(d) Fig. 3: Decreasing branching property: worst-case scenari

Fig. 2: Path of two robots after a) 5, b) 8, and c) 12 steps onpath of the robots after a) 1 step, b) 3 steps, c) 6 steps, d) 8

tree of degree 4. d) Shows the edges traversed by both robsc??sos’ €) 10 steps, and f) 12 steps

Fig_. 2 shows two robots exploring a tree of degree A|‘t’. Since other robots can have entergdonly after all other
showing the state after 5, 8, and 12 steps, and the edges l@%les had been entered by at least one robot, then
by both robots. Again, the dotted line represents the path of

robotrob;, and the dashed line the path of robob,. At the
beginning, each robot enters a branch that has not been used
before. Only the last branch is entered by both robots. The®
robot that entered the last branch secongh{) meets after )
two steps the returning robotdp;), that entered the branch!n the same way, foi < a < d the edgee, is blocked for
first, and they both return together to the starting vertex. gll robots that have not entered it at the time t.he robot on
The fundamental property of the MR-DFS algorithm off "éturns. Any further robot can have entered this edge only
trees is the decreasing branching property as describdein @fter alld — 1 other edges have been entered by at least one
following lemma. To this end, let us first define an incomin§PPot; available for that are the— 1 other robots, which are
edge of a vertex as the edge in the direction of the starti@%a"ablea — 1 additional times from their previous returns.
vertex, and all other edges as outgoing edges. us
o if d—1> j+a—2, no other robot can have enteregd
Lemma 3: The edges used by several robots form a subtree. SO ¢, is used by only one robot;
If a vertex is visited byj robots, then among the outgoing e« €lsed—1 < j+a—2, then at mostj+a—2)—(d—1)
edges there is at most one edge that is taken by abots, other robots entered,, ande, is used by at most+a—d
and at most + 1 edges that are taken by at least i robots, robots.
fori=0,...,5—1. So if 7 > d, then thed outgoing edges are used by at most
j,i—1,...,j—d+1robots. Ifj < d, then the outgoing edges
Proof: To prove this lemma, we consider a vertex are used by at mogtj —1,...,1,1,...,1,1,1 robots. This
that hasd outgoing edges and is entered pyobots. Fig. 3 completes the proof of the Lemma. [ |
illustrates the worst-case situation of the lemmadet j = 4.
Each robot that enters this vertex chooses an outgoing edgd,et us now introduce the concept akcess multiplicity
explores a subtree, returns to the vertex and chooses anothe;) of an edgee; as the number of additional robots after
edge, and so on, until it finds no further edges left. Eadhe first that use that edge. By Lemma 1, each robot uses
time it returns from an edge, that edge becomes finished ag@th edge at most twice, going out and returning, so for each
unavailable for all robots which have not already used it. Wedgee; we have0 < p(e;) < k — 1, and the edge is used
number the outgoing edges, . . ., ¢4 in the sequence in which exactly 2 + 2 £1(e;) times. Fig. 4 shows the multiplicity of a
robots return from that edge. Thus the first robot to return tosubtree with 3 outgoing edges being explored by 4 robots.
blockse; for all those robots which have not already enteretihe excess multiplicity plays a key role to define an upper

o if d > j, no other robot can have entered, soe; is
used by only one robot;

elsej > d, so at mostj — d other robots entereel, and
ey is used by at mosf — d + 1 robots.
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Fig. 4: Multiplicity of a subtree with 3 edges being explored

by 4 robots [k k+1 k+r—1
= () (1) e (1)

by induction, using
bound for the exploration time of the MR-DFS algorithm as
described by the following lemma. F(k,r)

Lemma 4: The time that the MR-DFS algorithm takes to

k r—2 ,. .
; ; k 1+

explore a tree withe edges byk robots is - E ' E :
2 i i £ 24

1 1=2 j=0
tC_E<2e+2EZZM(eZ—)>. 1) B i +7Z2 k <i+j>
2 7=0 =2 2+ J
Proof: To obtain the bound on the total exploration time, k =2 4
we just add up the work done by each robot, and divide by = {5 + < 34 >
k: since all the robots finish at the same time, we just count j=0 J
the total number of edges walked by the robots when they r—1 k+j
finish. Each edge was taken at least once in each direction, = (2 +' )
plus 23, #(e;) additional edges, taken by several robots j=0 J
(multiplicity). |

Finally, we reduce this sum by
Lemma 5: The function f(k,r) defined byf(k,1) = (%)

and the recursion fllr) = @ + <k_3H) A (k:;; 1)
f(k’r):<§)+§;f(z‘7r—l) 2 (kﬁ2>+(:i—;>++<k—£i;1>
e - ()20~
f(kar)—<ki1)_k' ®) _ (zj:)—(k—l)—l.

Proof: We solve the recursion by repeated application of

| ]
the binomial sum

Let us now state the main result concerning the exploration

1 b b+1 time of the MR-DFS algorithm on trees.
() (0 (0)-G1) o :
a a a a+1



Theorem 2: The MR-DFS algorithm explores a tree with first returning robot. At that time%a robots will have entered
edges and radius using k robots in time is at most each branch, so the total multiplicities of the edges arecstm
k1 a and%a, which is much better tham anda — 1 for largea.
min <2€7 2e + 2 <k + T)) < 2e + <1 + E) E,JH_ For small number of robots, no improvement can be expected,
ko k\k—1 k r k! as the next theorem shows.

(6)

Proof: The proof comes from the observation that the For two robots = 2) the following Theorem 2 shows

, R . a type of optimality of MR-DFS: no strategy can guarantee
maximum totalexcess multiplicityof all multiply used edges a better competitive ratio against an optimal explorer, who
together is the sum of the excess multiplicities of the sdstr b 9 P P '

entered from the root, plus the excess multiplicities on thaelready knows the tree and always makes the best choices.

edges from the root to those subtrees. In a tree of radieach

subtree entered from the root has radius at mest, and by . o
. plores a tree withke edges and radius in time at moste + r.
Lemma 3 there is at most one subtree entered by edbots, L 3 . Co
This is at most; of the optimum exploration time, and no

at most two subtrees entered by 1 or k robots, etc., and only laorithm for two robots quarantees a factor less §1at
at mostk — 1 subtrees are entered by two or more robots. A9 9

other subtrees entered from the root are entered only by one
robot, so they do not contribute any excess multiplicityu3h
the maximum total excess multiplicig %, ) as a function of

the number of robots and the radius, satisfies the recursion

Theorem 3: The MR-DFS algorithm with two robots ex-

Proof: For two robots £ = 2) Lemma 3 implies that
the subtree used by both robots does not branch, so it is a
path with length at most. Thus, ). /(e;) < r. By Lemma

4, the exploration time is at mos}(2e + 2r) = e + r,

g(k,r) < ( ) tglkyr—1)+glk—1r—1)+ as c_Ialmed by the theorem. Furthermore, as exp!alne_d in
2 Section IV-A, the general lower bound of the explorationdim
gk—2,r—1)+---+g(2,7—1) of a tree using two robots iﬁlax(%, 2r) = max(e, 2r), and

<3 :
with the boundary conditiog(k,1) = (k — 1) + (k — 2) + et < g max(e, 2r)

1 _ 3
...+ 1= (%). This is the same recursion as the one solved* ]]:or " i zewe T]ave thamax(&?_r) =¢ ?jnde+7°<§ 2%
in Lemma 5, only with< instead of=; so g(k,7) < f(k,7). « forr > 5e we havemax(e, 2r) = 2r ande +r < 3r =

3
Thus the total excess multiplicity is bounded byk,r) < 320

(F+7) — k. From Lemma 4 this bounds the exploration timé his proves the upper bounds of the theorem.

as To see that no algorithm can guarantee a better approx-
1 2¢e  2(k+r imation ratio than2 for the optimum exploration time, we
te=—2e+2f(k,1) < —+ — . 7 . 2 . i .
(2e +2f(k,7)) kK <k — 1) 0 use an adversarial construction. Consider a graph which has

three branches, two of lengthand one of lengthi2¢t. This
tree can be optimally explored by two robots in tiche one
robot explores the two short branches, the other the one long

To show the growth rate of this expression fosmall andr
large, we observe

1 (k + 7’) _ k) —147)---(247) branch. But any algorithm finds out whether a branch is a
k\k—1 k(k —1)! short branch or a long branch only after a robot has reached
(k4 r)k=1 ENF1q o1 the end of the branch. Thus an adversary who reveals the
e (1 + ;) e graph as it is explored can always make the last branch to be

explored a long branch; so any algorithm can be forced to take
exploration time at leadit. Thus no algorithm for two robots
gives a better competitiveness ratio than %hachieved by the
MR-DFS algorithm. [ |

For r > k this is less thanﬁ—}lr’“—l < r*=1; indeed, the
coefficient ofr*~1 is rapidly decreasing for largérandr > k.
[ |

Remark 3: The adversarial construction described above is

. ) the special case of a general construction described in [32]
Improves theo(lcﬁ * r)-glglorlthm_ of [2]..The dependence 2], which shows that withk robots, no strategy can guarantee
on r, however, is not. This is an interesting bound for tre€s i 1
: . > .a competitive factor better thah— .
with many edges and small radius (trees with high branching k
factors). The bound on the totekcess multiplicityused in the
proof above views it only as a function efandk, and leaves
e open. This bound can be reached, but only i§ very large
compared tar. To obtain a further improvement along these Two set of simulations were performed in order to corrob-
lines in the bound would require an analysis wittas third orate the most important results of this paper: Theorem 2 and
parameter. Also, the bound in Lemma 3 can be improved if tidneorem 3. To do so, the algorithm was run in three different
number of robots is larger than the degree: ifobots reach a scenariostong, wide andfull N-ary trees (from now on we will
vertex with two outgoing edges before the first of these robfer tofull N-ary trees as simply ‘N-ary trees’). Examples of
returns to that vertex, they will have distributed equaleio these scenarios are shown in figure 5. The size of the tree was

the two edges until one of the two edges is finished by tlecreased (in long and wide trees) by increasing the number o

Remark 2: In its dependence om, this is optimal and

V. SIMULATION RESULTS
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Fig. 5: Example of different tree generation methods used f 20
the simulations.
150

edges. In N-ary trees, the size of the tree was defined by wémo
number of childrenN that each vertex was allowed to have”
and by the radius of the tree.

The way the robots were distributed in a vertex is
follows: assumek robots arrive at a vertex that hase,

50
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Exploration Time

Steps
o
(=3

200

150
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downward unexplored edges. The robots will distribute 0

themselves in the most homogeneous way possible where
maximum difference in the number of robots in every edge

is equal to one. As an example consider 5 robots arriving - 6: Comparison of exploration times and bounds of explo-
a vertex with 3 unexplored downward edges: two of thodation on long trees of increasing number of vertices using a

20 40 60 100

Number of Edges

©)

80

0
0

edges will be taken by 2 robots and the last edge will % P) 3, ¢) 5, and d) 20 robots.

taken by only one robot. The idea is to obtain the maximum
parallelism in the exploration process. For long and widedr
since the same number of edgesan produce very different 15

20 40 60

Number of Edges

(d)

80 100

configurations of trees (each one with a different explorati

time), we performed 100 runs of the simulation per each val '®

—— Upper Bound
= = =Lower Bound
Exploration Time

of e. The results of the first set of simulations are shown i g
Fig. 6 and Fig. 7. The plots show the upper bound defintg
by Theorem 2, the lower boundnéx(2¢/k,2r)) and the &%
exploration time (mean of 100 runs) due to different numbe 4
of robots exploring the tree. "
For N-ary trees, only one simulation per tree configuratic

—— Upper Bound
= = =Lower Bound
Exploration Time

was run since, due to the symmetry of the tree, the algoritt
will make the robots explore the tree in the same way all tt
time. The plots in Fig. 8 show the upper bound (straight line

0

0

40 60 80
Number of Edges

(@)

20

40 60 80
Number of Edges
(b)

100

and exploration time (dashed line) for this type of tree whe 150

the exploration is performed by different number of robot

from 2 to 6. The results for lower bound were not shown i

—— Upper Bound
= = =Lower Bound
Exploration Time

order to simplify the reading of the plots. 100

From the results of this set of simulations (Fig. 6 to Fig. €2
we can observe that the bounds of exploration, as defined®
this paper, hold at all times. An interesting result is show %
in Fig. 6 and Fig. 7 when using 2 robots: the curve c
the upper bound of Theorem 2 matches tightly that of tt

200

—— Upper Bound
= = =Lower Bound
Exploration Time

—————————————

actual exploration time of the algorithm. In particular ince 0

trees, the analysis presented in section IV produces boafnd:
exploration that perfectly enclose the exploration timec&ll

0

that tightness on the bounds of exploration is desired irmrdrig. 7: Comparison of exploration times and bounds of explo-
to perform estimations on the actual exploration time when mation on wide trees of increasing number of vertices usjng a
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explicit expression for this exploration time has been fbur2, b) 3, ¢) 5, and d) 20 robots.

(like in this case).
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10001 ——Cpperseur G b | ‘ ‘ ‘ search approach (a desired characteristic of any multtrob
s00 | g Uhper bound (1 et ] strategy). Lastly, we can observe from the simulations that
soo L~ Eoploraton i & avers) ] when increasing the number of robots, the exploration tifne o
ol ] the algorithm is brought down closer to the lower bound. That
ol | is, the exploration time is reduced closer to the optimaktim

2 ) of exploration.

2o J/ Fig. 9 shows the behavior of the algorithm on a tree with
“oor 1 a fixed configuration when using up to 15 robots. The fixed
soof e configuration corresponds to a N-ary tree (N=7) and a radius
2001 7 s 1 of 5. The plot clearly shows how the exploration time is
100} — - % | consistently reduced when more robots are included in the

. N Sttt daaiil) : ‘ system.
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1400 1 A second set of simulations was performed to corroborate
* .
/] the statement of Theorem 3: with 2 robots the upper bound

g 1 ' | of the exploration time i + r. Fig. 10 shows the results for

ol , | long and wide trees.
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Fig. 8: Comparison between upper bound (straight line) aig
exploration time (dashed line) on N-ary trees of increasir®
radius and different number of robots. Subfigures from top
bottom respectively show the curves for N=2, N=3 and N=!
From the results on wide trees (Fig. 7) it is evident that ot
lower bound is very close to the exploration time. As such, ..
suggest the existence of a linear functionkofr ande that Fig. 10: Comparison between the exploration time and the
actually defines the exploration time or that at least upperpper bound defined in Theorem 3 on long (left) and wide
bounds it more tightly. The results on all trees corroborateight) trees of increasing number of edges using 2 robots.
Remark 2, since our upper bound is indeed prevalent on trees
with many edges and small radius (wide trees), particularly The plots show that the upper bound holds at all times
when using a small number of robots. For long trees, the upgerd that, as expected, it is tight with respect to the actual
bound is basically defined b3e. exploration time. Fig. 10 also allows us to observe in detail
The results on all trees also show that our MR-DFS dhe performance of the algorithm using two robots and how
gorithm is effective in reducing the exploration time wheiit contrasts with the result of single robot DFS: in wide tee
increasing the number of robots and that this exploratidhe average reduction in the exploration time is approxahyat
time is at all times better than the single robot depth fir&0%, whereas in long trees the reduction averages 30%.
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VI. CONCLUSIONS 121
In this paper, we have proposed an algorithm multi-robo,

DFS for the exploration of an unknown undirected graph,

P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelcofiéctive tree
exploration,” Networks, vol. 48, pp. 166-177, 2006.

] C. Papadimitriou and M. Yanakakis, “Shortest paths witha map,”

Theoretical Computer Science, vol. 84, pp. 127-150, 1991.

which is guaranteed to succeed on any graph, never worse thigh X- Deng, T. Kameda, and C. Papadimitriou, “How to learnusmknown

classical single-robot DFS, and which on trees we have prove
to be optimal for two robots, and having optimal dependencg
on the size of the tree, but not its radius, forrobots. In
this specific graph exploration scenario, the robots atgilyi
all located at a common starting vertex, they discover the
existence of an edge only when they see one end of it, ard
know where an edge leads only when they have followed it.
Vertices that have been visited before are recognized. 8]
The proposed algorithm needs only a local communication
model, where communication happens only between a robd?)
and a bookkeeping device left at that node, or between robots

environment,” inProceedings of the |[EEE 32nd Annual Symposium on
Foundations of Computer Science (FOCS), 1991, pp. 298-303.
A. Blum, P. Raghavan, and B. Schieber, “Navigation in amiliar
geometric terrain,” inProceedings of the twenty-third annual ACM
symposium on Theory of computin (STOC), 1991, pp. 494-504.

] J. O'Rourke,Art Gallery Theorems and Algorithms. Oxford University

Press, 1987.

W. Chin and S. Ntafos, “Optimum watchman routes, Hroceedings of

the twenty-third annual ACM Symposium on Computational Geometry

(SoCG), 1986, pp. 24-33.

S. Ntafos and L. Gewali, “External watchman route3he \Visual

Computer, vol. 10, pp. 474-483, 1994.

F. Hoffmann, C. Icking, R. Klein, and K. Kriegel, “The pajon

exploration problem,”"SSAM Journal on Computing, vol. 31, pp. 577—
600, 2001.

standing simultaneously at the same node. So the robots [a0g R. Fleischer, T. Kamphans, R. Klein, E. Langetepe, andT@ppen,

almost completely unaware of the actions of the other robots
The bookkeeping devices are not in contact with each othﬁrl']
they could be replaced by a piece of chalk leaving marks
on the possible exits of the rooms. This is a much weak@é?!
communication assumption than global shared informatfon;
global shared information is available, no bookkeepingai=s [13]
are needed. The exploration algorithm will even succeed if
some robots are lost or destroyed. As long as there are ed
that are not marked as finished, some other robot will follow
up that edge. If there is at least one robot left, only an irexir [15]
finished mark can keep a vertex from being visited. Destigyin
or manipulating the marks on the bookkeeping devices can
prevent the exploration from success: erasure of finishedisnal16]
can keep the algorithm from terminating.

In addition to our theoretic analysis, several simulatiorsz,
have been performed in order to corroborate the mathernhatica
results previously described. The result of the simulation
show that our analysis on trees produces upper and lo er]
bounds on the exploration time that are close to the actual
exploration time of the algorithm, particularly when catesi-  [19]
ing two robots. The simulations also show that the algorithm
effectively reduces the exploration time when the number @b]
robots is increased and that this exploration time is at all
times better than when using the single-robot depth firstkea
approach. Moreover, it can be seen how the performance[zif
the algorithm reaches closer to the optimal exploratioretim
when more rqbots are used_ to perform the exploration. (22]

The analysis of this algorithm was only for trees; the most
important next theoretical problem is to provide an analysi
for general graphs. No bounds on multi-robot exploration &3
general graphs in this scenario are known. The bound fos tree
could be improved, perhaps even giving optimality for ferth [24]
small numbers of robots. And the most important problem for
the practical applicability of this algorithm is to removget [og
assumption of robot movement in time-steps: the real robot
movement is asynchronous, and the algorithm itself makes k6l
assumption on synchronization; that is artifact of the ysial

[27]
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