
IEEE TRANSACTIONS ON ROBOTICS 1

Generalized Topology Control for Nonholonomic
Teams with Discontinuous Interactions

Ryan K. Williams, Member, IEEE, Andrea Gasparri, Member, IEEE, Giovanni Ulivi, Member, IEEE, and
Gaurav S. Sukhatme, Fellow, IEEE

Abstract—In this paper, we consider the problem of general
topology control in multi-robot systems with nonholonomic kine-
matics. Our contribution is twofold: we first demonstrate the
correctness of topology control under the assumption that the
network topology can switch arbitrarily and that potential-based
mobility is discontinuous with respect to topology changes; we
then demonstrate that a multi-robot team under the above listed
conditions continues to achieve topology control when actuator
saturation is applied and in the presence of arbitrary discontinu-
ous (and possibly non-pairwise) exogenous objectives. Simulation
results are given to corroborate our theoretical findings.

Index Terms—Multi-Robot Systems; Topology Control; Nons-
mooth Analysis.

I. INTRODUCTION

COLLECTIVE multi-robot (-agent) motion has received
significant attention in recent years, due to the scalability

and robustness arising from the local nature of such systems.
A wide array of multi-robot research trends have emerged,
including area coverage [2], target tracking [3], and topology
control [4]. Several important assumptions and shortcomings
of multi-robot system control have been solved over the past
decade, ranging from requirements for team interaction graphs
(e.g., rigidity [5]), to assumptions on how proximity limitations
impact agent motion (e.g., switching interaction graphs [6]).

The first goal of this paper is to illustrate a general topology
control scheme for teams of nonholonomic robots. By general
we mean possessing the capability to achieve various constraints
on the interaction graph, including connectivity, rigidity, neigh-
borhood cardinality, etc. Various works have investigated multi-
robot topology control, including local connectivity control
[7], [8], global connectivity control based on both discrete and
algebraic methods [4], [9], and generic rigidity control [10],
[11]. Likewise, nonholonomic kinematics have been studied
in many multi-robot contexts, such as [8], [12], [13]. While
there have been works to combine local topology control with
nonholonomic constraints, as in the connectivity control of
[8], general topology control under nonholonomic constraints
remains an open problem. Our first contribution will thus
demonstrate the nonholonomic extension of the mobility-based
link control framework [14], allowing for the control of arbitrary
topological constraints through team motion.
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A preliminary version of this work appeared in [1].

The second goal of this work is to allow the network topology
of the system to switch arbitrarily, with potential-based
mobility being discontinuous with respect to topology changes.
Such discontinuities are a reality of spatially interacting systems
and can arise from non-ideal communication, proximity-limited
inter-robot sensing, heterogenous robot mobility, unexpected
failures, etc. In treating discontinuities in collaborative systems,
works such as [15] consider finite switching, allowing classical
analysis for differentiable dynamical systems to identify an
equilibrium set of robot motions. Alternatively, for example
in [16], works allow for infinite switching however under
the assumption that consecutive network switches occur with
a bounded dwell-time. It is also very common to assume
the smoothness of potential fields with respect to proximity
limitations, as in [8], [14]. Finally, as in the well-known
flocking work [6], although the network is free of switching
restrictions, it remains driven by potential field interactions
that are necessarily continuously differentiable with respect to
topology changes. We also mention the work [17] which is
thematically related, where nonsmooth techniques are applied to
ensure collision avoidance, yielding a new family of centralized
navigation functions.

The final goal is to demonstrate that a multi-robot team
under the above listed conditions continues to achieve topology
control when actuator saturation is applied and in the presence
of arbitrary discontinuous (and possibly non-pairwise) exoge-
nous inputs. Our analysis of exogenous inputs also suffices
to conclude robustness to measurement noise and actuator
disturbance. Saturation and exogenous disturbance have been
addressed in previous work, as in [18], [19], most commonly
through Input-To-State-Stability (ISS) type results. In this work,
we make a step forward by addressing these aspects together
in a discontinuous context under general topology control.

II. PRELIMINARIES

A. Agent and Network Modeling

Consider a system of n mobile nonholonomic ground robots
operating over R2. The state of each robot i is described by
its pose pi(t) = [xi(t), yi(t), θi(t)]

T ∈ R2 × (−π, π], where
qi(t) = [xi(t), yi(t)]

T ∈ R2 and θi(t) ∈ (−π, π] denote the
position and orientation of the robot i ∈ I = {1, . . . , n} at
time t ∈ R+, respectively. Each robot i moves according to
the following unicycle kinematics:

ẋi(t) = vi(t) cos θi(t)

ẏi(t) = vi(t) sin θi(t)

θ̇i(t) = ωi(t)

(1)
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where ui(t) = [vi(t)ωi(t)]
T ∈ R2 is the velocity control input

for the robot i, with vi(t) and ωi(t) the linear velocity and the
angular velocity at time t ∈ R+, respectively . The aggregate
state of the system is then given by p = [pT1 , . . . , p

T
n ]T , the

stacked vector of robot poses. Furthermore, we denote with
q = [qT1 , . . . , q

T
n ]T the stacked vector of robots positions.

Assume the robots can interact in a proximity-limited way,
inducing a topology of a time varying nature. Specifically,
letting dij , ‖qij‖ , ‖qi − qj‖ denote the Euclidean distance
between robots i and j, and (i, j) a link between interacting
robots. The spatial neighborhood of each robot is partitioned
by defining concentric radii ρ2 > ρ1 > ρ0. The radii introduce
a hysteresis in interaction by assuming that links (i, j) are
established only after dij ≤ ρ1, with link loss then occurring
when dij > ρ2, generating the annulus of ρ2 − ρ1 where
decisions on link additions and deletions are made.

The assumed spatial interaction model is formalized by the
undirected dynamic graph, G(t) = (V, E(t)), with vertices
(nodes) V = {1, . . . , n} indexed by I (the robots), and edges
E ⊆ V×V such that (i, j) ∈ E ⇔ (‖qij‖ ≤ ρ2) ∧ (σij(t) = 1),
with switching signals σij(t) = 0 if (i, j) /∈ E ∧ ‖qij‖ > ρ1,
or σij(t) = 1 otherwise, with ∧ the logical operator
“AND”. Finally, we assume (i, i) /∈ E (no self-loops) and
(i, j) ∈ E ⇔ (j, i) ∈ E (symmetry) hold for all i, j ∈ V .
Nodes with (i, j) ∈ E are called neighbors and the neighbor
set for an robot i is denoted Ni(t) = {j ∈ V | (i, j) ∈ E(t)}.

B. Nonsmooth Analysis

We now briefly review the necessary machinery from
nonsmooth analysis to prove our results. For a comprehensive
overview the reader is referred to [20]–[22] and references
therein. Consider the following dynamical system:

ẋ = f(x) (2)

where f(·) : Rn → Rn is a measurable and essentially locally
bounded function. Note that, if the map f(·) is continuous,
then every solution x(t) is continuously differentiable. On
the contrary, for a map f(·) that is only measurable and
essentially locally bounded the classical definition of a solution
of differential equations no longer holds. Instead, the following
notion of Filippov solution can be applied.

Definition 2.1 (Filippov Solution): A function x(·) is called
a solution of (2) on [t0, t1] if x(·) is absolutely continuous on
[t0, t1] and for almost all t ∈ [t0, t1] it holds ẋ ∈ K[f ](x) with
K[f ] : Rn → B(Rn) the Filippov set-valued map defined as:

K[f ](x) ≡
⋂
δ>0

⋂
µ(Z)=0

co {f(B(x, δ) \ Z)} (3)

where
⋂
µ(Z)=0 denotes the intersection over all sets Z of

Lebesgue measure zero, co denotes the convex closure and
B(Rn) denotes the collection of subsets of Rn, and B(x, δ)
denotes an open ball centered at x of radius δ.

Next, in order to consider a locally Lipschitz function as a
candidate Lyapunov function, Clarke’s generalized gradient is
defined as follows [23]:

Definition 2.2 (Clarke’s generalized gradient): Let
V : Rn → R be locally Lipschitz continuous. Define the
generalized gradient of V at x by

∂V (x) = co
{

lim
i→∞

∇V (xi) |xi → x, xi /∈ ΩV ∪ Z
}

(4)

where the set ΩV is the set of Lebesgue measure zero where
the gradient of V does not exist, Z is an arbitrary set of zero
measure (which can simplify computation), and co{·} denotes
the convex hull.

At this point, we outline a chain rule for differentiating
regular functions along the Filippov solution trajectories.

Theorem 2.1 (Chain Rule): Let x(t) be a Filippov solution
to ẋ = f(x) with f(·) : Rn → Rn measurable and essentially
locally bounded, and V : Rn → R be a locally Lipschitz
and in addition regular function. Then V (x(t)) is absolutely
continuous and the time derivative (d/dt)V (x(t)) exists almost
everywhere and d

dtV (x(t)) ∈a.e. ˙̃V (x(t)) where the set-valued
map ˙̃V (x(t)) is the generalized time derivative defined as:

˙̃V (x(t)) =
⋂

ξ∈∂V (x)

ξTK[f ](x). (5)

Computing the K[f ](x) in our case involves maps f(·) that
are expressed as sums, products, or compositions of other
functions. We now review a calculus originally developed
in [24] (and outlined in an extended way in [22]), which will
prove instrumental for the technical developments of this work.

Definition 2.3 (Calculus): The map K[f ] : Rn → B(Rn)
has the following properties.

1) Assume that f : Rn → Rn is locally bounded. Then
∃Zf ⊂ Rn, µ(Zf ) = 0, such that ∀Z ⊂ Rn, µ(Z) = 0,

K[f ](x) = co
{

lim
i→∞

f(xi) |xi → x, xi /∈ Zf ∪ Z
}
(6)

2) Assume that f, g : Rn → Rn are locally bounded. Then

K[f + g](x) ⊆ K[f ](x) +K[g](x) (7)

3) Assume that fi : Rn → Rn, i = 1, . . . , n are locally
bounded. Then

K
[
×n

i=1fi

]
(x) ⊆×n

i=1K [fi] (x) (8)

where the cartesian product notation and column
vector notation are used interchangeably, that is
x1 × x2 × x3 = [xT1 , x

T
2 , x

T
3 ]T with xi ∈ Rn.

4) Assume that f : Rn → Rn is locally bounded and
g : Rn → Rn is continuously differentiable. Then

K[f ◦ g](x) = K[f ](g(x)). (9)

where ◦ represents the function composition operator.
5) Assume that f : Rn → Rn is locally bounded and

g : Rn → Rn×d (i.e. matrix valued) is continuous. Then

K[g · f ](x) = g(x)K[f ](x) (10)

where g · f(x) = g(x)f(x) ∈ Rn.
6) Let V : Rn → R be locally Lipschitz continuous; then

K[∇V ](x) = ∂V (x) (11)

7) Assume that f : Rn → Rn is continuous. Then

K[f ](x) = {f(x)} (12)
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III. TOPOLOGY CONTROL WITH DISCONTINUITIES

A. An Event-Driven Decision-Making Framework

Let us first give a very brief description of the coordinated
topology control developed in [14], to which the reader is
referred to for a detailed description. Assume we have a
topological property over G, denoted by P(G), which we
would like to ensure holds over the system trajectories, where
by topological property we mean some desirable structure
of the graph describing the agent interactions, e.g., graph
rigidity. Furthermore, consider a more granular partitioning
of inter-agent neighborhoods defined by dij ∈ [ρ−2 , ρ2], the
outer decision region where networked computation decides if
E∪{(i, j)} satisfies topological constraint P; and dij ∈ [ρ1, ρ

+
1 ],

the inner decision region where networked computation de-
cides if E \ {(i, j)} satisfies topological constraint P, with
0 < ρ0 < ρ1 < ρ+1 < ρ−2 < ρ2. When dij = ρ2 a new
interaction is possible to occur and an event is triggered for
agents i and j to evaluate whether a new link (i, j) would
be acceptable given the topological constraint P(G). Likewise,
when dij = ρ1 and (i, j) ∈ E it is possible to lose an existing
interaction and an event is triggered for agents i and j to
evaluate whether losing link (i, j) would be acceptable given
the topological constraint P(G). Formally, predicates over link
(i, j), P aij and P dij , are evaluated by applying cooperative
computation in the network to determine safe link additions
and deletions according to the constraint P(G). We remind the
reader that a predicate is a mapping from a statement to a
Boolean outcome. It is important to note that the design of
the above radii must consider the physical characteristics of
the robotic systems and their computational capabilities. As
computation must terminate within the radii, system motion
and computation must be compatible.

We only require here the notion of a decision set, Dai for link
addition and Ddi for link deletion, which contain for an agent
i all neighbors j ∈ Ni for which repulsive or attractive control
must be applied for edge maintenance. Furthermore, there are
two high-level ideas from [14] which will guarantee topological
property maintenance. First, the members of decision sets Dai
and Ddi must be rendered invariant through robot mobility. That
is, the topology control mechanism must preserve membership
of all agents in these decision sets for the sake of level set
invariance of the Lyapunov function. Under this invariance
condition, the predicates must then be chosen to represent
worst-cases with respect to a topological constraint:

Definition 3.1 (Worst-case graph, [14]): Assume we have a
topological constraint P and a known space of reachable topolo-
gies GP(t) in which the network graph must lie, G(t) ∈ GP(t),
for all t ≥ 0. A worst-case graph relative to constraint P is a
graph Gw ∈ GP such that P(Gw) = 1⇒ P(G) = 1, ∀G ∈ GP.
Now, the predicates must be constructed along the following
restrictions:

Assumption 1 (Preemption, [14]): If in GP we can identify a
worst-case graph, we must choose P aij , P

d
ij (and by extension,

the members of previously defined decision sets) such that
P(Gw) = 1, which implies that P(G) = 1, ∀G ∈ GP, and
network constraints are satisfied.

Let us now consider the following control law for maintain-
ing a desired topological property with unicycle kinematics
(guideline for this control law comes originally from [8]):

vi = −
(
fxi

cos θi + fyi sin θi
)

ωi = −(θi − arctan2(fyi , fxi
))

(13)

where fxi and fyi are defined as:

fxi =
∑
j∈Ni

∇xiψ
o
ij +

∑
j∈Dd

i

∇xiψ
d
ij +

∑
j∈Da

i

∇xiψ
a
ij

fyi =
∑
j∈Ni

∇yiψoij +
∑
j∈Dd

i

∇yiψdij +
∑
j∈Da

i

∇yiψaij
(14)

and ψoij , ψ
a
ij , ψ

d
ij are potential fields for a general cooperative

objective (e.g. swarming or coverage), link addition (attrac-
tion), and link deletion (repulsion), respectively. Further, the
potentials are assumed to have the following properties.

Assumption 2 (Potential Field Properties): The potential
fields ψhij : R2 → R≥0, with h ∈ {o, d, a} are assumed to
be locally Lipschitz continuous and regular functions with
properties:

∇qiψhij = ∇qiψhji and ∇qiψhij = −∇qjψhij (15)

For the purposes of edge control, we only assume that ψaij →∞
as dij → ρ+1 and ψdij → ∞ as dij → ρ−2 . For collision
avoidance, one can simply ensure that ψoij →∞ as dij → 0.

B. Discontinuous Robot-to-Robot Interaction

The most natural points in which a system may experience
discontinuity is when a discrete transition occurs and some
reactive control must be applied. For our problem, such points
occur when new agents are detected at radius ρ2, current
neighbors begin to move away at radius ρ1, and when neighbors
enter the collision region ρ0. Thus, different than previous work,
we assume that control functions ψoij , ψ

a
ij , ψ

d
ij are nonsmooth

at radii ρ2, ρ1, ρ0. This, in turn, implies that controllers (13),
(14) may be discontinuous in nature. To support our analysis
we define state-dependent sets, Soi , Sdi , and Sai , that contain
all nearby robots j such that the inter-robot distance ‖qij‖
generates a discontinuity according to the assumptions for
the objective and link maintenance potentials. Further, for
convenience, we define N̂i , Ni \ Soi , Ñi , Ni ∩ Soi ,
D̂di , Ddi \ Sdi , D̃di , Ddi ∩, Sdi , D̂ai , Dai \ Sai , and
D̃ai , Dai ∩ Sai which represent neighbor interactions without
discontinuity (hat) and with discontinuity (tilde) at some
q ∈ R2N . Our first result regarding the correctness of topology
control with discontinuities is now formalized.

Theorem 3.1: Consider a multi-robot system where
each robot has unicycle kinematics (1) driven by control
laws (13)-(14). Assume that the control functions ψoij , ψ

a
ij , ψ

d
ij

of (14) fulfill Assumption 2, yielding discontinuities in controls
(13)-(14) arising at radii ρ0, ρ1, ρ2 due to dynamic interactions
with nearby robots. For a desired topological property P(G) and
associated predicates P aij , P

d
ij , if the system initial condition is

such that P(G) holds, it will hold for all future time. Further,
if ψoij →∞ as dij → 0, then collisions are avoided.
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Proof: Let us consider the following Lyapunov function:

V =

n∑
i=1

∑
j 6=i

(
ψoij + ψdij + ψaij

)
(16)

together with the set of evolution ΩV = {p |V ≤ c} for finite
c > 0. The level sets of V are compact and invariant with re-
spect to the relative positions of all pairs of agents. Specifically,
arguments for the compactness of ΩV with respect to relative
distance can be found for example in [6], [8], [16]. Notice that
as opposed for example to the analysis of [8], the potentials
fields are assumed to be only locally Lipschitz continuous and
regular. This fact requires us to apply nonsmooth techniques
outlined in Section II-B. First, let us define the stacked
vector structure of the gradient ∇V of the Lyapunov function
∇V = [(∇V )T1 . . . (∇V )Tn ]T with translational (x, y) and ro-
tational (θ) components (∇V )i = [(∇V )xi , (∇V )yi , (∇V )θi ]

T ,
and the generalized gradient ∂V = [(∂V )T1 . . . (∂V )Tn ]T again
with components (∂V )i = [(∂V )xi , (∂V )yi , (∂V )θi ]

T . Before
computing the generalized time derivative, let us first compute
the generalized gradient of (16), yielding

∂V=

n∑
i=1

( ∑
j∈N̂i

∂ψoij +
∑
j∈D̂d

i

∂ψdij +
∑
j∈D̂a

i

∂ψaij

︸ ︷︷ ︸
Non-switching

+
∑
j∈Ñi

∂ψoij +
∑
j∈D̃d

i

∂ψdij +
∑
j∈D̃a

i

∂ψaij

︸ ︷︷ ︸
Switching

)

(17)
under the sum rule for the generalized gradient [25], and
using the fact that ∇qiψhij = 0, outside of Ni, Ddi and Dai ,
respectively, with h ∈ {o, d, a}. The generalized gradient for
each potential ψhij is:

∂ψhij =

{
co{03n, ∇p ψ

h
ij} j ∈ Shi

∇p ψ
h
ij otherwise

(18)

with co
{

03n, ∇p ψ
h
ij

}
=
{
αhij ∇p ψ

h
ij

}
where αhij ∈ [0, 1],

03n ∈ R3n a vector of zeros, and the gradient ∇p ψ
h
ij expressed

in a closed form:

∇p ψ
h
ij =

[
0T3 , . . . ,

[
(∇qiψhij)T , 0

]T
, . . . , 0T3 , . . . ,

. . . ,
[
(∇qjψhij)T , 0

]T
. . . , 0T3

]T (19)

Then we can describe the generalized gradient ∂V as:

∂V =

n∑
i=1

2
∑
j∈N̂i

∇pψ
o
ij + 2

∑
j∈D̂d

i

∇pψ
d
ij + 2

∑
j∈D̂a

i

∇pψ
a
ij


+

n∑
i=1

∑
j∈Ñi

(
co{03n, ∇p ψ

o
ij}+ co{03n, ∇p ψ

o
ji}
)

+

n∑
i=1

∑
j∈D̃d

i

(
co{03n, ∇p ψ

d
ij}+ co{03n, ∇p ψ

d
ji}
)

+

n∑
i=1

∑
j∈D̃a

i

(
co{03n, ∇p ψ

a
ij}+ co{03n, ∇p ψ

a
ji}
)
(20)

where we have applied the potential symmetry properties (15).
Thus, an element ξ ∈ ∂V is of the form

ξ =

n∑
i=1

2
∑
j∈N̂i

∇pψ
o
ij + 2

∑
j∈D̂d

i

∇pψ
d
ij + 2

∑
j∈D̂a

i

∇pψ
a
ij


+

n∑
i=1

∑
j∈Ñi

αoij ∇p ψ
o
ij + αoji∇p ψ

o
ji

)
+

n∑
i=1

∑
j∈D̃d

i

αdij ∇p ψ
d
ij + αdji∇p ψ

d
ji

)
+

n∑
i=1

∑
j∈D̃a

i

αaij ∇p ψ
a
ij + αaji∇p ψ

a
ji

)
(21)

for a given selection of scalars αhij with h ∈ {o, d, a}.
For convenience we can also write an element ξ ∈ ∂V as
ξ =

[
ξT1 , . . . , ξ

T
n

]T
where ξi ∈ R3 has the structure

ξi = 2
∑
j∈Ñi

∇piψoij +
∑
j∈N̂i

(
αoij + αoji

)
∇piψoij

+ 2
∑
j∈D̃d

i

∇piψdij +
∑
j∈D̂d

i

(
αdij + αdji

)
∇piψdij

+ 2
∑
j∈D̃a

i

∇piψaij +
∑
j∈D̂a

i

(
αaij + αaji

)
∇piψaij

=

 ξxi
ξyi
ξθi

 ∈
 (∂V )xi

(∂V )yi
(∂V )θi

 =

 (∂V )xi
(∂V )yi
{0}


(22)

Now we must evaluate the Filippov map of our differential
equation (1). Specifically, by applying the Cartesian product
rule from the calculus of Definition 2.3 we obtain:

K[ṗ] ⊆
[
K[ṗ1]T , . . . ,K[ṗn]T

]T
(23)

The elements of K[ṗi] then have the following form:

K[ṗi] ⊆

 K[vi cos θi]

K[vi sin θi]

K[ωi]

 =

 K[vi] cos θi

K[vi] sin θi

K[ωi]

 (24)

where again we have applied the Cartesian product rule, the
absolute continuity of the θi and the continuous differentiability
of the trigonometric functions. Now, according to (13), we have
that K[vi] is defined as:

K[vi] = −K
[(
fxi

cos θi + fyi sin θi
)]

(25)
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with fxi
and fyi as in (14). By exploiting the calculus we

proceed as follows:

K[vi] = −K
[(
fxi cos θi + fyi sin θi

)]
⊆ −(K [fxi ] cos θi +K [fyi ] sin θi)

(26)

Let us now recall the chain rule given in Theorem 2.1:

˙̃V (x(t)) =
⋂

ξ∈∂V (x)

ξTK[f ](x) (27)

Now, for each ξ ∈ ∂V the following holds by exploiting (23):

ξT K [ṗ] ⊆
n∑
i=1

ξTi K [ṗi] (28)

By performing the ith inner product of (28) we have:

ξTi K [ṗi] =
[
ξxi ξ

y
i 0
]  K[vi] cos θi

K[vi] sin θi

K[ωi]


= −

(
ξxi cos θi + ξyi sin θi

)
·(

K [fxi ] cos θi +K [fyi ] sin θi
)
(29)

Let us now define the members ξ̂i of the Filippov map as:

ξ̂i =

 ξ̂xi

ξ̂yi

ξ̂θi

∈
 K [fxi ]

K [fyi ]

K [ωi]

=

 K[(∇V )xi ]

K[(∇V )yi ]

K [ωi]

=

 (∂V )xi
(∂V )yi
K [ωi]


(30)

where we have exploited the calculus of Definition 2.3.
From the above it is clear that ξi of (22) and ξ̂i of (30)

are such that their projections over the x and y axes, that is
ξxyi = [ξxi ξ

y
i ]T and ξ̂xyi = [ξ̂xi ξ̂

y
i ]T , are members of the same

set (∂V )xyi = (∂V )xi × (∂V )yi , namely the x and y portion of
the generalized gradient ∂V . It is this notion that allows us to
reason on the negative semi-definiteness of (27). Specifically,
notice that an element of the inner product given in (29) can
be written as:

−
(
ξxi cos θi + ξyi sin θi

)(
ξ̂xi cos θi + ξ̂yi sin θi

)
(31)

or equivalently in a matrix form as −(ξxyi )T Mi ξ̂
xy
i with Mi

defined as:

Mi =

[
cos2 θi cos θi sin θi

cos θi sin θi sin2 θi

]
(32)

with spectrum σ(Mi) = {λ1 = 0, λ2 = 1} for all θi by
construction. At this point, let us define ?ξxyi as follows:

?ξxyi = arg min
ξxy
i ∈(∂V )xy

i

{
(ξxyi )T Mi ξ

xy
i

}
(33)

then, the following holds for any element ξ̂xyi :

(?ξxyi )T Mi ξ̂
xy
i ≥ 0 (34)

It is important to notice that given the fixed eigenvalues of
Mi, one may assume that (?ξxyi )T Mi ξ̂

xy
i is always identically

zero, by choosing ?ξxyi in the nullspace of Mi. However, we
remind the reader that as ?ξxyi is a member of a convex domain
that is a subset of R2, it may not always be the null eigenvector

of Mi. Note that, (34) follows from the fact that for a given
convex domain D and a smooth function f(x) = xTAx at a
point x? = arg min f(x), the point x? satisfies

∇f(x?)(y − x?) ≥ 0, ∀y ∈ D (35)

Then since ∇f(x?) = 2(x?)TA, from (35) it follows that:

(x?)T Ay ≥ (x?)T Ax? ≥ 0, (36)

thus proving (34).
We are now ready to reason on the Lyapunov derivative (27),

which takes the form of an intersection of intervals. Seen in this
way, it follows that to prove negative semi-definiteness of (27),
we must identify only a single interval in the intersection⋂
ξ∈∂V (x) ξ

TK[f ](x) which is negative or zero, forcing the
intersection to be contained in such an interval. Given our
previous analysis, we can now find such an interval as follows
by recalling that d

dtV (x(t)) ∈a.e. ˙̃V (x(t)) and by noticing that
by construction from (34) there always exists ξ ∈ ∂V (x), such
that ξi = [?ξxyi , 0] ∀ i and thus for every other ξ̂ ∈ ∂V , where
ξ̂ = [ξ̂T1 , . . . , ξ̂

T
n ]T with ξ̂i = [ξ̂xyi , ξ̂θi ]T , the following holds:

d

dt
V (x(t)) ≤ −

n∑
i=1

(?ξxyi )TMi ξ̂
xy
i ≤ 0 (37)

Since V (x(t)) is absolutely continuous, ˙̃V (x(t)) is bounded
below zero, and V is bounded above zero, V (x) tends to a
constant as t → ∞. Thus, if our system is initialized in a
feasible configuration with finite V (x), the function remains
finite for all time t. By design, our controllers approach
infinity when dij → ρ−2 for neighbors j ∈ Ddi and dij → ρ+1
for neighbors j ∈ Dai . Thus, as V (x) is finite for all time,
decision set invariance is preserved and topological property P
is maintained over time. Furthermore, if ψoij →∞ as dij → 0,
collision avoidance follows by equivalent reasoning.

IV. SATURATED ACTUATION AND EXOGENOUS INPUTS

Let us now consider the following variation of the control
law given in (13) where both exogenous inputs and saturations
are taken into account:

vi = −gv
((
fxi

+ f̃xi

)
cos θi +

(
fyi + f̃yi

)
sin θi

)
ωi = −gω

(
θi − arctan2(fyi + f̃yi , fxi

+ f̃xi
)
) (38)

where fxi
and fyi are defined as (14), f̃xi

and f̃yi are
measurable and essentially locally bounded input functions,
and gh(·) : D → D̄ for some convex sets D̄ ⊆ D ⊆ R is
any continuous monotonic odd saturation function such that
|gh(z)| ≤ |z| , ∀ z ∈ D with h ∈ {v, ω}.

We now introduce a minor technical extension of the
Filippov calculus given in Definition 2.3, which is required for
computing the Filippov map under saturations as in (38).

Lemma 4.1: Consider a continuous and monotonic function
g(·) : R→ R and a measurable and essentially locally bounded
function f(·) : R→ R, then:

K[g(f)](x) = {g(K[f ](x))} (39)

where notation {g(K[f ](x))} denotes the set of Filippov map
elements K[f ](x) each having had g(·) applied to them.
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Proof: Let us recall that by definition we have:

K[g(f)](x) = co{lim g(f(xi)) |xi → x, xi /∈ Zf ∪ Z} (40)

Now by exploiting a basic property of limits since g(·) is
continuous we have that:

co{lim g(f(xi)) |xi → x, xi /∈ Zf ∪ Z} =

co{g(lim f(xi)) |xi → x, xi /∈ Zf ∪ Z}
(41)

At this point, let D ⊂ R then if g(·) is monotonic we have:

max
x∈D

g(x) = g(max
x∈D

x) and min
x∈D

g(x) = g(min
x∈D

x) (42)

which, due to the fact that we are in R, suffices to ensure:

co{g(lim f(xi)) |xi → x, xi /∈ Zf ∪ Z} =

{g(co{lim f(xi) |xi → x, xi /∈ Zf ∪ Z})}
(43)

thus proving the lemma.
We now prove our main result when both exogenous inputs

and saturations are taken into account.
Theorem 4.1: Consider a multi-robot system where

each robot has unicycle kinematics (1) driven by con-
trol laws (38) and (14). Assume that the control functions
ψoij , ψ

a
ij , ψ

d
ij of (14) fulfill Assumption 2, having discontinuities

arising at radii ρ0, ρ1, ρ2 due to dynamic interactions with
nearby robots. For a desired topological property P(G) and
associated predicates P aij , P

d
ij , if the system initial condition is

such that P(G) holds, it will hold for all future time. Further,
if ψoij →∞ as dij → 0, then collisions are avoided.

Proof: The proof follows similar reasoning as in Theo-
rem 3.1. In particular, we consider again the Lyapuov function
given in (16) for which, according to (38) and by exploiting
Lemma 4.1, K[vi] now takes the following form:

K[vi] = −K
[
g
(

(fxi + f̃xi) cos θi + (fyi + f̃yi) sin θi

)]
= −g

((
K[fxi

] +K[f̃xi
]
)

cos θi

+
(
K[fyi ] +K[f̃yi ]

)
sin θi

)
(44)

The analysis now involves determining the structure of the
intersection (27) as follows:

ξTi ṗi =
[
ξxi ξ

y
i 0
]  K[vi] cos θi

K[vi] sin θi

K[ωi]


= −

(
ξxi cos θi + ξyi sin θi

)
·

g
((
K[fxi

] +K[f̃xi
]
)

cos θi

+
(
K[fyi ] +K[f̃yi ]

)
sin θi

)
(45)

where {fxi , fyi} and {f̃xi , f̃yi} are respectively nominal
and exogenous contributions. By recalling the chain rule of
Theorem 2.1 having form (28) we obtain:

ξT K [ṗ] ⊆
n∑
i=1

ξTi K [ṗi] ⊆ −
n∑
i=1

[(
ξxi cos θi + ξyi sin θi

)
·

g
((
K[fxi ] +K[f̃xi ]

)
cos θi +

(
K[fyi ] +K[f̃yi ]

)
sin θi

)]
(46)

An element of the above intervals will then have the form:

−
n∑
i=1

(
ξxi cos θi + ξyi sin θi

)
·

g

ξ̂xi cos θi + ξ̂yi sin θi + ξ̃xi cos θi + ξ̃yi sin θi︸ ︷︷ ︸
z


(47)

where ξ̃xi ∈ K[f̃xi
] and ξ̃yi ∈ K[f̃yi ].

Clearly the form of (47) is closely related to the re-
sult derived in Theorem 3.1. It is therefore reasonable to
proceed by invoking reasoning from Theorem 3.1 in order
to prove our result in this context. In that direction, first
consider an equivalent form for the inner product element
(31), where instead of a quadratic form we work simply with
the scalar multiplication −γiγ̂i where γi, γ̂i ∈ R. Notice
that ξxyi = [ξxi , ξ

y
i ]
T
, ξ̂xyi = [ξ̂xi , ξ̂

y
i ]T are members of the

same convex domain D ⊆ R and for a fixed θi, the terms
γi , ξxi cos θi + ξyi sin θi and γ̂i , ξ̂xi cos θi + ξ̂yi sin θi are
linear combinations and thus themselves members of the same
convex domain D′ ⊆ R. The reasoning applied in Theorem 3.1
is then restated as:

∃ γ?i ∈ D′ | γ?i γ̂i ≥ γ?i γ?i , ∀ γ̂i ∈ D′ (48)

Now, consider the following logical implication which we
would like to prove true:

∃ γ?i ∈ D′ | γ?i γ̂i ≥ γ?i γ?i , ∀ γ̂i ∈ D′ →
γ?i g(γ̂i + z) ≥ γ?i g(γ?i + z), ∀ γ̂i ∈ D′, z ≤ Z

(49)

The above statement, which will lead us to our result, is
proven by contradiction as follows. Assume that the statement
∃ γ?i ∈ D′ | γ?i γ̂i ≥ γ?i γ

?
i , ∀ γ̂i ∈ D′ holds, and that there

exists some γ̂i ∈ D′ such that γ?i g(γ̂i + z) < γ?i g(γ?i + z) for
some z ≤ Z . If γ?i > 0, we have that γ?i g(γ̂i+z) < γ?i g(γ?i +z)
implies γ̂i + z < γ?i + z → γ̂i < γ?i due to the non-
decreasingness of g(·), which is clearly contradictory to
γ?i γ̂i ≥ γ?i γ

?
i , ∀ γ̂i ∈ D′. If instead we have γ?i < 0, an

analogous contradiction arises. Thus, our assumption that there
exists some γ̂i ∈ D′ such that γ?i g(γ̂i + z) < γ?i g(γ?i + z)
is incorrect, and thus the statement (49) is verified. To
complete the proof, we simply must ensure that the sign of
(47) eventually becomes negative as the system approaches
undesired configurations. This is equivalent to requiring that
γ?i and g(γ?i +z) in the above general reasoning have the same
sign and that their product becomes arbitrarily large (i.e., we
view them as some element of (47)). To prove this last part, let
us recall that for any ξ /∈ null(Mi), since σ(Mi) = {0, 1}, it
follows that ξ must be aligned with the eigenvector associated
to λ2 = 1, and thus:

−
n∑
i=1

?ξxyi
T
Mi

?ξxyi = −
n∑
i=1

‖?ξxyi ‖
2 = −‖?ξxy‖2 (50)

where the eigenvector decomposition was used to obtain the
first equality.

Then, if ‖?ξxy‖ goes to infinity, then there always exists
a ‖?ξxyi ‖ that goes to infinity, and thus for the equivalence
seen before, also

(
?ξxi cos θi + ?ξyi sin θi

)
goes to infinity. At
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(a) (b) (c)

Fig. 1. Control of graph rigidity with actuator saturation and discontinuously arriving environmental sensing objective.

this point, by recalling that γ?i ,
(
?ξxi cos θi + ?ξyi sin θi

)
(for

some i), this implies that being z ≤ Z , γ?i will eventually
dominate Z in magnitude as it becomes arbitrarily large, and
thus the terms γ?i and g(γ?i + z) will have the same sign. Also,
it is clear that for the same reason, γ?i g(γ?i + z) will grow
arbitrarily large, and thus dominating in magnitude the entire
sum in (47). Finally, recalling that the intervals (46) lie in an
intersection due to the chain rule Theorem 2.1, we conclude
that as the system approaches undesired configurations ˜̇V ≤ 0.
As in Theorem 3.1, this fact along with our control function
construction yields our result.

V. SIMULATION RESULTS

As our analysis has shown the correctness of topology
control for arbitrary exogenous objectives with discontinuities,
we choose here the objective of environmental sensing for
simulations (e.g., as in [26]). In particular, we model incom-
ing adaptive sensing commands as discontinuous exogenous
objectives to mimic what may occur when a centralized
entity computes and relays commands to a decentralized team.
Furthermore, we assume robots to be capable of measuring the
environmental process, e.g., in the case of a thermal plume or
air pollution dispersion the robots may measure temperature
or a relevant chemical signature, respectively.

Consider a workspace in R2 within which a time-varying
environmental process ϕ : R2 ×R→ R evolves. It is common
to model a time-varying process as a linear combination
of fixed basis functions with time-varying weights, [27].
That is ϕ(x, t) =

∑B
i=1 ri(t)bi(x) = [r(t)]Tb(x) where

ri : R → R are the time-varying weights for the basis
functions bi : R2 → R, for all i = 1, . . . , B, with
r , [q1, . . . , qB ]T ∈ RB and b , [b1, . . . , bB ]T ∈ RB the
stacked vectors of weights and basis functions, respectively.
The evolution of the weights is then described by the noisy
linear dynamics ṙ = Ar+w(t) for some fixed transition matrix
A ∈ RB×B and zero-mean Gaussian noise w(t) : R → RB .
Our sensing objective is to choose team inputs that allow for the
best estimation of the weight process r(t), which given a known
set of basis functions, yields an estimate of the environmental
process ϕ. Given that our weight dynamics are linear, the
optimal estimator is the Kalman filter, the details of which are
well-known and thus omitted here. Denoting by H ∈ RB×B the
covariance matrix of the Kalman filter applied to the weights of

the environmental model, our exogenous environmental sensing
objective takes the final form f̃ = arg minu [Trace(H+(u))]
where H+(u) is the covariance matrix for a simulated step
forward of the Kalman filter under unicycle kinematics (1)
with stacked velocity command u = [u1, . . . , un]T and
weight dynamics introduced above. Such a process may yield
discontinuously arriving exogenous commands due to a step-
wise approximated optimization or the fact that the optimization
may run orders of magnitude slower than topology control.

We now only require a description of the topological
constraints for the multi-robot team, i.e., rigidity of the sensing
graph. Briefly, rigidity represents an important requirement of
a multi-robot interaction graph, as it is necessary for informa-
tion flow and localizability [28]. Following the requirements
outlined in Section III-A, the deletion predicates for rigidity
control are defined as P dij , frigid(Gw) where frigid is a
Boolean function indicating the rigidity (computed by applying
decentralized algorithm [10]) of the worst-case graph Gw given
by Gw = (V, Ew), Ew , {(i, j) ∈ E | i ∈ V, j /∈ Cdi } with Cdi
the set of neighbors of agent i for which a decision to delete
the edge (i, j) has been made. For the proposed objective,
link addition is not a concern. However, we reiterate that our
formulation is completely general and can accommodate many
interesting topological properties beyond rigidity.

Our simulation results for rigidity control with an envi-
ronmental sensing objective are reported in Fig.1a-1c. Each
unicycle robot is represented by an isosceles triangle, while
the edges of the interaction graph are denoted by black
lines for uncontrolled edges and red lines for controlled
edges. The level curves of the time-varying process are
shown with color indicating the process value, where we
have used five Gaussian basis functions (B = 5) distributed
in the environment (note the Gaussian means depicted in
Fig.1a). The remaining parameter settings for the simulation
were: Gaussian variances {25, 25, 30, 35, 25}, fixed weights
{5, 5, 3, 8, 4} for the Gaussian bases, and time-varying weight
matrix A = −0.05I5 with initial condition r = 1. The
results of Fig.1 indeed verify our theoretical contributions.
Rigidity is maintained over the team trajectories, despite the
presence of a discontinuously arriving exogenous objective
and saturated actuations. Furthermore, we continue to see an
expected behavior from our sensing objective. As the most
variation in the weight process, and thus the most information,
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Fig. 2. Monte Carlo analysis comparing network size n to uncertainty reduction
(measured as trace(H+) normalized by the number of basis functions B),
from the initial to final team configuration.

is found at the basis function centers, the team seeks the centers
while guaranteeing the topological (rigidity) constraint.

Finally, we report in Fig.2 the results of a Monte Carlo study
of the above example. Specifically, we run 100 randomized
instances of the environmental sensing objective with rigidity
maintenance. For each instance, random network size n, initial
agent positions, environmental process weights r, Gaussian
basis functions b, and transition matrix A were selected.
Additionally, we guaranteed that the initial graph topology
was rigid. Now, Fig.2 depicts the reduction in uncertainty
of the Kalman filter (as measured by trace(H+) normalized
by the number of basis functions B) between the initial
configuration of the system and the final one, for all 100 random
instances. Rigidity was verified as being maintained for each
instance, while Fig.2 demonstrates that estimator uncertainty
was substantially reduced. In other words, this suggests that
although in general topology control constrains team motion,
interesting exogenous objectives can still be faithfully executed.

VI. CONCLUSIONS

In this paper, we considered the problem of general topology
control in multi-robot systems with nonholonomic kinematics.
We provided the extension of a mobility-based link control
framework to nonholonomic kinematics, by demonstrating
the correctness of topology control when interactions switch
arbitrarily and when potential-based mobility is discontinuous
with respect to topology changes. Further, we demonstrated that
a multi-robot team under the above listed conditions continues
to achieve topology control when actuator saturation is applied
and in the presence of arbitrary discontinuous (and possibly
non-pairwise) exogenous objectives.
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