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Abstract—In this paper, we consider the problem of evaluating
the rigidity of a planar network, while satisfying common
objectives of real-world systems: decentralization, asynchronic-
ity, and parallelization. The implications that rigidity has in
fundamental multi-robot problems, e.g., guaranteed formation
stability and relative localizability, motivates this work. We
propose the decentralization of the pebble game algorithm of
Jacobs et. al., an O(n2) method that determines the generic
rigidity of a planar network. Our decentralization is based
on asynchronous messaging and distributed memory, coupled
with auctions for electing leaders to arbitrate rigidity evaluation.
Further, we provide a parallelization that takes inspiration from
gossip algorithms to yield significantly reduced execution time
and messaging. An analysis of the correctness, finite termination,
and complexity is given, along with a simulated application in
decentralized rigidity control. Finally, we provide Monte Carlo
analysis in a Contiki networking environment, illustrating the
real-world applicability of our methods, and yielding a bridge
between rigidity theory and realistic interacting systems.

Index Terms—Networked Robots; Distributed Robot Systems;
Asynchronous and Parallel Communication; Graph Rigidity.

I. INTRODUCTION

MULTI-ROBOT networks remain among the areas of
interest at the forefront of robotics research, particularly

given the steady advancement of wireless communication,
embedded computation, and hardware platforms. Intuitively,
networks of intelligently interacting robots provide significant
advantages over the single-agent alternative; for example
scalability, failure robustness, spatiotemporal efficiency, het-
erogeneity, etc. As recent work has demonstrated, multi-
robot investigations are far-reaching across various disciplines,
ranging from sampling, tracking, and coverage [1]–[3], mobility
and topology control [4]–[6], to general agent agreement
problems [7]–[9].

In modeling and analyzing multi-robot networks, research
balances between accuracy in approximating realistic systems,
and ease of technical analysis, most typically in understanding
mobility, communication, and sensing. Here we take the former
approach, considering a problem that underlies fundamental
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objectives in multi-robot research, while operating under the
commonly desired parameters of real-world systems: decen-
tralized implementation where information is exchanged only
in local neighborhoods, asynchronicity in communication, and
parallelization of agent actions to maximize efficiency. Our
problem of interest in this work is the evaluation of the rigidity
property of an interconnected system of intelligent agents, e.g.,
robots, sensors, etc. A relatively under-explored topic in the
area of multi-agent systems, rigidity has important implications
particularly for mission objectives requiring collaboration. For
example, rigidity is vital for guaranteeing stability in controlling
formations of mobile vehicles, when only relative inter-agent
information is available [10]–[15]. Further, when a global frame
of reference is inaccessible, rigidity becomes a necessary and
under certain conditions sufficient condition for localization
tasks with distance or bearing-only measurements [16]–[19].
Rigidity is also a necessary component of global rigidity [20]–
[22], which can further strengthen the guarantees of formation
stability and localizability. We point out that it is typical in
the literature to assume rigidity properties of the network in
order to achieve multi-agent behaviors, however few works
provide means of evaluating or achieving network rigidity in a
dynamic manner, or under the network conditions considered
here.

The general study of rigidity has a rich history in various
contexts of science, mathematics, and engineering [21]–[28].
In [27], combinatorial operations are defined which preserve
rigidity, with works such as [10], [12] extending the ideas to
multi-robot formations. In [29] an algorithm is proposed for
generating rigid graphs in the plane based on the Henneberg
construction [27], however from a centralized perspective.
Similarly, [30] defines decentralized rigid constructions that are
edge length optimal, however provide no means of determining
an unknown graph’s rigidity properties. The work [31] defines
a rigidity eigenvalue for infinitesimal rigidity evaluation and
control, however such efforts remain centralized and require
continuous communication and computational resources.

As opposed to previous work, we propose a decentralized
method of evaluating generic graph rigidity in the plane, without
a priori topological information, to our knowledge the first
such effort, particularly in a multi-agent context. To this end,
we decentralize in an asynchronous manner the pebble game
proposed by Jacobs and Hendrickson in [28], an algorithm
that determines in O(n2) time the combinatorial rigidity of
a network, and a spanning edge set defining the minimally
rigid subcomponent of the graph. Specifically, we propose
a leader election procedure based on distributed auctions
that manages the sequential nature of the pebble game in
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a decentralized setting, together with a distributed memory
architecture. Further, an asynchronous messaging scheme
preserves local-only agent interaction, as well as robustness
to delays, failures, etc. Towards network efficiency, we extend
our decentralization by parallelizing a portion of the rigidity
evaluation, taking inspiration from gossip messaging, yielding
significant improvements in execution time and communication.
To illustrate our contributions, we provide a thorough analysis
of the correctness, finite termination, and complexity of our
propositions, along with an illustration of decentralized rigidity
control. Finally, we provide Monte Carlo analysis of our
algorithms in a Contiki networking environment, illustrating
the real-world applicability of our methods.

Although a few recent works have begun to investigate
rigidity evaluation or control [29]–[32], they provide graph con-
structions or centralized control relying on expensive estimation
techniques. We seek decentralization specifically to enhance
scalability and robustness as network size increases, and to
serve systems where centralized operation may be difficult or
impossible. Our contributions therefore aim to bridge the gap
between fundamentally important multi-agent behaviors and
realistic rigidity evaluation in networked systems, ultimately
moving towards robotic/sensor systems with achievable rigidity-
based behaviors (as in our previous work [33]).

In summary, the major contributions of this paper are as
follows:
• A leader-based, asynchronous decentralization of the

classically centralized and serial pebble game algorithm,
yielding a decentralized method for planar rigidity evalu-
ation.

• A study of exploiting structural properties of rigidity for
parallelization of our decentralized algorithm.

• A characterization of our algorithms in the real-world
Contiki networking environment, with a full codebase
release for use in the robotics community.

A preliminary portion of this paper appeared in [34], com-
pared to which we provide expanded analysis and correctness
proofs, a complete treatment of parallelization, expanded
rigidity control simulations, and a Monte Carlo analysis in the
Contiki environment demonstrating applicability under realistic
conditions.

The outline of the paper is as follows. In Section II, we
provide preliminary materials including agent and network
models, a model of algorithm execution, and primers on rigidity
theory and the pebble game. A decentralization of the pebble
game is presented in Section III, with a parallelization given
in Section IV. Simulation results are provided in Section V,
with concluding remarks as well as directions for future work
are stated in Section VI. Finally, technical algorithm details
and related proofs are given in the Appendix.

II. PRELIMINARIES AND FORMULATION

A. Agent, Network, and Execution Models

Consider a system composed of n agents indexed by
I = {1, . . . , n} operating in R2, each possessing computation
and communication capabilities, denoting by (i, j) a bi-
directional communication link between agents i and j. The

agent may also be mobile, and thus we assume basic continuous
dynamics

ẋi = f(x) (1)

where xi, f(xi) ∈ R2 are the position and the velocity control
input for an agent i ∈ I , respectively, and x ∈ R2n is the vector
of stacked agent positions. For the purposes of integration into a
motion control architecture (Section V-A) it is further assumed
that each robot can sense other nearby robots and obstacles,
yielding the displacement dij ∈ R , ‖xij‖ , ‖xi − xj‖.

To describe the interconnected system formally, we
define undirected graph G = (V, E), having vertices
V = {v1, . . . , vn} associated with each agent i ∈ I, and
edge set E = {(i, j) | i, j ∈ V} with unordered pairs (i, j),
where by definition (i, j) ∈ E ⇔ (j, i) ∈ E , ∀ i 6= j ∈ I,
excluding the possibility for self loops, (i, i) /∈ E , ∀ i ∈ I.
Agents i and j with an edge (i, j) ∈ E are referred to as
neighbors, where the set of neighbors for the ith agent is given
by Ni = {vj ∈ V | (i, j) ∈ E}.

Assumption 1 (Connectedness): We assume the network
topology G is connected for all time to guarantee all agents
can participate in rigidity evaluation (Sections III and IV),
that is for every pair of nodes i, j there exists a sequence of
nodes in G that are adjacent and connect i, j. Notice that this
assumption is trivially satisfied in rigid networks.

As our concern in this work is to operate under the typical
parameters of realistic interacting systems, we assume an
asynchronous model of time, where each agent i ∈ I has a
clock which ticks according to some discrete distribution with
finite support1, independently of the clocks of the other agents
[35], allowing also for the possibility of delayed communication
over links (i, j) ∈ E . Equivalently, this corresponds to a global
clock having time-slots [tk, tk+1) which discretizes system
time according to clock ticks, where for convenience we will
use simply t to denote time [36]. Such assumptions induce
asynchronicity in both agent computation and the broadcast and
reception of inter-agent messages. First, we make the following
assumptions concerning agent execution:

Assumption 2 (Agent execution): Each agent i ∈ I executes
according to an algorithm on ticks of their clock, handling
messages from neighbors j ∈ Ni and sending messages if
dictated by the execution. Local execution is assumed to
consist of atomic logic and message handling, that is all local
algorithmic state, denoted Xi, is assumed to be without race
conditions due to asynchronicity.

A coordinated algorithm execution with associated stopping
condition can then be defined as follows:

Definition 2.1 (Coordinated execution): A coordinated al-
gorithm execution is given as a sequence of ticks tk and
therefore local execution and asynchronous messaging, yielding
a terminal state upon some discrete network stopping condition

fstop ∈ {0, 1} , f({X1, . . . ,Xn}) (2)

dependent on the execution states of the network agents. It is
assumed that (2) can be computed using distributed techniques,
e.g., consensus [37], as will be demonstrated in our proposed

1Notice that such an assumption allows us to appropriately characterize
finite algorithm termination.
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algorithms. After the stopping condition is observed the agents
enter into an idle state where no execution occurs.

Finally, to guarantee soundness with respect to network
communication and asynchronicity, we make the following
assumptions:

Assumption 3 (Asynchronous messaging): We assume each
agent i ∈ I treats messages received from neighbors j ∈ Ni

in a first-in-first-out (FIFO) manner, guaranteeing soundness
with respect to our proposed algorithm executions. Further,
the possibility of communication failure is handled with best-
effort messaging, i.e., there exists an underlying communication
control layer where a best effort is made to deliver packets
in the network. Specifically, we assume that the best effort
guarantees message reception in finite time, or equivalently a
message failure can be handled appropriately with respect to
the algorithms that will be discussed.

B. Rigidity Theory
The primary concern of this work is the rigidity property

of the underlying graph G describing the network topology,
specifically as rigid graphs imply guarantees for example
in both localizability and formation stability of multi-robot
systems [12]. To begin, we recall the intuition of how rigidity
is recognized in a planar graph, following the exposition of
[28]. Clearly, graphs with many edges are more likely to be
rigid than those with only a few, specifically as each edge acts
to constrain the degrees of freedom of motion of the agents in
the graph. In R2, there are 2n degrees of freedom in a network
of n agents, and when we remove the three degrees associated
with rigid translation and rotation, we arrive at 2n− 3 degrees
of freedom we must constrain to achieve rigidity. Each edge
in the graph can be seen as constraining these degrees of
freedom, and thus we expect 2n− 3 edges will be required to
guarantee a rigid graph. In particular, if a subgraph containing
k vertices happens to contain more than 2k − 3 edges, then
these edges cannot all be required for constraining the degrees
of motion, i.e., they cannot be all independent. Our goal in
evaluating rigidity is thus to identify the 2n − 3 edges that
independently constrain the motion of our agents, precisely
describing a networks underlying rigid component.

We now provide a brief technical overview of the above
intuition, and direct the reader to [23]–[27] for an in depth
review of rigidity theory. First, we require the notion of a
graph embedding in the plane, captured by the framework
Fp , (G, p) comprising graph G together with a mapping
p : V → R2, assigning to each node in G, a location in R2. The
natural embedding for us is to assign each node the position xi

associated with each agent, defined by the mapping p(i) = xi,
otherwise known as a realization of G in Rm. Therefore, a
framework describes both the communication topology of a
multi-agent system, and the spatial configuration of each agent
in the plane.

The infinitesimal motion of Fp can be described by assigning
to the vertices of G, a velocity ṗi , ẋi ∈ R2 such that

(ẋi − ẋj) · (xi − xj) = 0, ∀ (i, j) ∈ E (3)

where · is the standard dot product over Rm. That is, edge
lengths are preserved, implying that no edge is compressed or
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(d) Non-infinitesimally rigid.

Fig. 1. Example graphs demonstrating several embodiments of rigidity,
where dashed links indicate edges that have been added to form new networks.
Notice that all links in graphs (a), (b), and (d) are independent, while edge
(v1, v3) in (c) is redundant.

stretched over time. The framework is said to undergo a finite
flexing if pi is differentiable and edge lengths are preserved,
with trivial flexings defined as translations and rotations of R2

itself. If for Fp all infinitesimal motions are trivial flexings,
then Fp is said to be infinitesimally rigid. Otherwise, the
framework is called infinitesimally flexible, as in Fig. 1a, where
v1 and v3 can move inward with v2 and v4 moving outward,
while preserving edge lengths [27]. In the context of a robotic
network, rigid infinitesimal motion corresponds to movement
of the ensemble in which the distances between robots remain
fixed over time.

The infinitesimal rigidity of Fp is tied to the specific
embedding of G in R2, however it has been shown that the
notion of rigidity is a generic property of G, specifically as
almost all realizations of a graph are either infinitesimally rigid
or flexible, i.e., they form a dense open set in R2 [38]. Thus,
we can treat rigidity from the perspective of G, abstracting
away the necessity to check every possible realization. The
first such combinatorial characterization of graph rigidity was
described by Laman in [23], and is summarized as follows2:

Theorem 2.1 (Graph rigidity, [23]): A graph G = (V, E)
with realizations in R2 having n ≥ 2 nodes is rigid if and only
if there exists a subset Ē ⊆ E consisting of |Ē | = 2n−3 edges
satisfying the property that for any non-empty subset Ê ⊆ Ē ,
we have |Ê | ≤ 2k − 3, where k is the number of nodes in V
that are endpoints of (i, j) ∈ Ê .

Laman’s notion of graph rigidity is also referred to as generic
rigidity, and is characterized by the Laman conditions on the
network’s subgraphs. Intuitively, the concept of rigidity can be
thought of in a physical way, that is if the graph were a bar
and joint framework, it would be mechanically rigid against

2The extension of Laman’s conditions to higher dimensions is at present an
unresolved problem in rigidity theory.
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external and internal forces. However, we point out that the
rigidity of an underlying graph is purely a topological property.
A network of agents that is described by a rigid graph is not
necessarily mechanically rigid. Instead, the structure of its
interconnections, in our case robot-to-robot communication,
possesses the combinatorial properties of the above Laman
conditions.

Denote by GR the set of all rigid graphs in R2, and the
graph S = (V, Ē) satisfying Theorem 2.1 a Laman subgraph
of G. It follows from Theorem 2.1 that any rigid graph in the
plane must then have |E| ≥ 2n − 3 edges, with equality for
minimally rigid graphs. The impact of each edge on the rigidity
of G is captured in the notion of edge independence, a direct
consequence of Theorem 2.1:

Definition 2.2 (Edge independence, [28]): Edges
(i, j) ∈ E of a graph G = (V, E) are independent in
R2 if and only if no subgraph Ḡ = (V̄, Ē) has |Ē | > 2|V̄| − 3.
A set of independent edges will be denoted by E∗, while the
graph over E∗ is denoted by G∗.

The above conditions imply that a graph is rigid in R2 if
and only if it possesses |E∗| = 2n − 3 independent edges,
where edges that do not meet the conditions of Definition 2.2
are called redundant. Thus, in determining the rigidity of G,
we must verify the Laman conditions to discover a suitable
set of independent edges E∗. We refer the reader Fig. 1 for a
depiction of graph rigidity. Notice that the graph in Fig. 1a is
non-rigid as it does not fulfill the basic 2n−3 edge condition of
Laman. In adding edge (v2, v4) we then generate the minimally
rigid graph of Fig. 1b as every subgraph of k vertices has at
most 2k − 3 edges. Further addition of (v1, v3) yields the
non-minimally rigid graph in Fig. 1b, precisely as the graph
possesses greater than 2n−3 edges. Finally, Fig. 1d represents a
non-infinitesimally rigid graph as there exist non-trivial motions
that preserve edge lengths, i.e., v5 moves independently while
the remaining nodes rotate together, but it also is a generically
rigid graph as the underlying Laman conditions are satisfied.

C. A Pebble Game for Evaluating Generic Rigidity

To lessen the exponential complexity of the Laman condi-
tions we consider the pebble game proposed by Jacobs and
Hendrickson in [28]. A brief overview of the centralized pebble
game will be given here, beginning with a useful characteriza-
tion of the Laman conditions and edge independence:

Theorem 2.2 (Laman restated, [28]): For graph
G = (V, E), the following statements are equivalent:
• All (i, j) ∈ E are independent in R2.
• For each (i, j) ∈ E , the graph formed by quadrupling

(i, j), i.e., adding 4 virtual copies of (i, j) to E , has no
subgraph Ḡ = (V̄, Ē) in which |Ē | > 2|V̄|.

Theorem 2.2 represents the Laman condition, i.e., a subgraph
of k vertices can possess at most 2k − 3 edges, through the
simple quadrupling operation. In other words, if we add 3
virtual copies of an edge to some subgraph, and the condition
|Ē | ≤ 2k is met in this subgraph, it must be the case that the
property |Ē | ≤ 2k − 3 holds in the original subgraph. This
intuition can be further extended to incrementally evaluate edge
independence:

︸︷︷︸ ︸︷︷︸ ︸︷︷︸

︸︷︷︸ ︸︷︷︸

Fig. 2. An example of the pebble game for a rigid graph with n = 3 with
progression from left to right. Pebbles are given by black dots, quadrupled edges
by thick links (blue), pebble shifts by dashed arrows, and the local assignment
of pebbles by black arrows. Graph edges that remain to be quadrupled are
dashed. We have here |E∗| = 3.

Lemma 2.1 (Edge quadrupling, [28]): Given an indepen-
dent edge set E∗, an edge (i, j) /∈ E∗ is independent of E∗ if
and only if the graph formed by the union of E∗ and quadrupled
edge (i, j) has no subgraph Ḡ = (V̄, Ē) in which |Ē | > 2|V̄|.

The above Lemma provides us with a simple process for
testing rigidity: we incrementally quadruple edges in the graph,
check the induced subgraph property, and continue until we
have either discovered 2n− 3 independent edges or we have
exhausted E . However, this process alone does not save us
from the exponential complexity of verifying the subgraph
property. To this end, [28] provides a natural simplification in
the following pebble game:

Definition 2.3 (The pebble game, [28]): Considering a
graph G = (V, E) where we associate an agent with each
v ∈ V , give to each agent two pebbles which can be assigned
to an edge in E . Our goal in the pebble game is to assign
the pebbles in G such that all edges are covered, i.e., a
pebble covering. In finding a pebble covering, we allow the
assignment of pebbles by agent i only to edges incident to
vi in G. Further we allow pebbles to be rearranged only by
removing pebbles from edges which have an adjacent vertex
with a free pebble, such that the free pebble is shifted to the
assigned pebble, freeing the assigned pebble for assignment
elsewhere. Thus, if we consider pebble assignments as directed
edges exiting from an assigning agent i, when a pebble is
needed in the network to cover an edge (i, j), a pebble search
over a directed network occurs. If a free pebble is found, the
rules for local assignment and rearranging then dictate the
pebble’s return and assignment to (i, j).

Lemma 2.2 (Pebble covering, [28]): In the context of the
pebble game of Definition 2.3, if there exists a pebble covering
for an independent edge set E∗ with a quadrupled edge
(i, j) /∈ E∗, there is no subgraph violating the conditions of
Lemma 2.1, and the set E∗ ∪ (i, j) is independent.

Rigidity evaluation now operates as follows: every edge
e ∈ E is quadrupled, and an attempt to expand the current
pebble covering for E∗ to each copy of e is made, with
success resulting in E∗ ← E∗ ∪ e and termination coming
when |E∗| = 2n− 3. Intuitively, an agent’s pebbles represent
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its possible commitments to the network’s subgraphs, while
maintaining the subgraph conditions of Lemma 2.1, or in a
physical way the degrees of freedom of motion in R2. Further,
the edge quadrupling operation and the pebble game effectively
cast the Laman conditions on subgraphs in terms of a matching
problem. That is, as each agent is given 2 pebbles, and each
of 4 instances of a considered edge must be assigned a pebble,
we implicitly verify the 2k− 3 edge condition of Laman when
these 4 pebbles are found in a subgraph containing k vertices.
This is the case precisely because each previously considered
edge is assigned a single pebble.

The centralized pebble game of Jacobs is depicted in
Algorithm 1, with an illustration of the quadrupling and pebble
search procedure depicted in Fig. 2. In the simple three node
graph shown, there are six available pebbles that can only
be assigned locally. Thus, in quadrupling each edge and
finding four pebbles, the subgraph conditions of Laman are
incrementally verified. The progression is given from left to
right and clockwise in the figure, with pebbles given by black
dots, quadrupled edges by thick links (blue), pebble shifts by
dashed arrows, and the local assignment of pebbles by black
arrows. Graph edges that remain to be quadrupled are dashed.
Notice that in discovering the pebble to cover the final copy of
the last quadrupled edge (bottom middle pane), a search occurs
over the directed graph formed by previous pebble assignments.

III. AN ASYNCHRONOUS DECENTRALIZED PEBBLE GAME

The primary considerations in decentralizing the pebble game
of [28] lie in the sequential building of the independent edge
set E∗, the storage of E∗ and associated pebble assignments
over a distributed network, and the search and rearranging of
pebbles throughout the network. To deal with these issues, we
summarize the high level components of our decentralization:
• Leader election: to control the sequential building of
E∗, lead agents are elected through auctions to examine
their incident edges for independence. In determining
edge independence, pebbles are queried from the network
through inter-agent messaging in order to cover each
copy of a quadrupled incident edge. Leadership then
transfers to the next auction winner when the current
leader’s neighborhood has been exhausted.

• Distributed storage: independent edges and pebble as-
signments are localized to each agent, effectively dis-
tributing network storage. We then rely on messaging and
proper agent logic to support pebble searches and shifts.

• Local messaging: as opposed to searching a centralized
graph object for pebbles to establish edge independence,
we endow the network with a pebble request/response
messaging protocol to facilitate pebble searches.

Intuitively, our leader-based decentralization is an incremental
rooting of pebble searches at appropriately elected network
leaders, effectively partitioning rigidity evaluation as in Fig. 3.
For convenience we will denote by S our decentralization of
the serial pebble game of Algorithm 1.

In describing our algorithm we associate with each agent
i ∈ I the following variables, with initialization indicated
by ←:

Algorithm 1 The centralized pebble game [28].
1: procedure PEBBLEGAME(G = (V, E))
2: Assign each vi two pebbles, ∀ i ∈ I
3: E∗ ← ∅
4: for all (i, j) ∈ E do
5: Quadruple (i, j) over G
6: Search for 4 pebbles, originating from vi and vj
7: if found then
8: Rearrange pebbles to cover quadrupled (i, j)
9: . Expand independent set, check rigidity:

10: E∗ ← E∗ ∪ (i, j)
11: if |E∗| = 2|V| − 3 then
12: return E∗
13: end if
14: end if
15: end for
16: end procedure

• Pi ← ∅: Pebble assignment set containing at most two
edges {(i, j) ∈ E | j ∈ Ni}, that is incident edges (i, j)
to which a pebble is associated. For convenience, we let
pi = 2 − |Pi| ∈ {0, 1, 2} denote agent i’s free pebble
count.

• E∗i ← ∅: Local independent edge set, containing edges
{(i, j) ∈ E | j ∈ Ni} for which quadrupling and pebble
covering succeeds. By construction E∗ =

⋃
i E∗i .

A. Leader Election

An execution of the S algorithm begins when an agent
detects network conditions that require rigidity evaluation,
e.g., verifying link deletion to preserve rigidity. The initiating
agent begins by triggering an auction for electing an agent
in the network to become the leader. Specifically, to each
agent i ∈ I we associate a bid for leadership ri = [i, bi]
with bi ∈ R≥0 indicating the agent’s fitness in becoming the
new leader, with bi = 0 if agent i has previously been a
leader, and bi ∈ R+ otherwise. Denoting the local bid set by
Ri = {rj | j ∈ Ni ∪ {i}}, the auction then operates according
the following agreement process:

ri(t
+) = argmax

rj∈Ri

(bj) (4)

where the notation t+ indicates a transition in ri after all
neighboring bids have been collected through messaging. As
G is assumed connected for all time, (4) converges uniformly
to the largest leadership bid

ri = argmax
rj(0)

(bj(0)), ∀ i, j ∈ I (5)

after some finite time [39], [40]. After convergence of (4)
the winning agent then takes on the leadership role, with the
previous leader relinquishing its status. The proposed auction
mechanism allows us to decentralize the pebble game by
assigning to each leader the responsibility of expanding E∗i by
evaluating only their incident edges for independence. Also,
notice that previous leaders are never reelected due to bi = 0
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Fig. 3. Illustration of our leader-based decentralization concept for
n = 4 agents. Each leader vi inspects only the unevaluated portion of
their neighborhood Ni, passing leadership to a new agent (dashed arrow)
through a distributed auction. Each leader applies messaging to establish the
independence of their incident edges with respect to those of the previous
leaders.

for such agents, and that the condition bi = 0, ∀ i ∈ I allows
termination of the algorithm.

One would expect that as each leader expands the indepen-
dent set sequentially that the order of election is meaningful.
We characterize that relationship in the following:

Proposition 3.1 (Initial leader edges): All incident edges
{(i, j) ∈ E | j ∈ Ni} belonging to an initial leader i are
members of the independent set (i, j) ∈ E∗.

Proof: For each edge, a new node j 6= i must be considered
as no two edges of i can have the same endpoint and E∗
is empty due to i being the initial leader. Therefore, every
subgraph containing the edges and nodes incident to i must have
|Es| ≤ 2|Vs|−3 edges, where Vs are the nodes of the considered
subgraph and |Es| = |Vs|−1 due to the subgraph’s implicit tree
structure. Thus, as there exists no subgraph violating Definition
2.2, the result follows.

As the agent with the largest bid is elected, the bids dictate
the order of elected leaders and thus the edges that constitute
the identified rigid subgraph. In other words, the bids can be
applied based on the application. For example, if we assume
each edge is assigned a weight which indicates its value in
sensing or information, we could choose leader bids that are the
sum of incident edge value. Then the resulting rigid subgraph
would possess those edges that both establish rigidity and are
the most valuable in the given application. Bids could also be
chosen to reflect agent availability, processing capability, or
the cardinality of incident edges, or they can be leveraged in
terms of metrics related to mission objectives. The proposed
auction technique therefore affords us control over E∗ that goes
beyond simply discovering the network’s rigidity property.

B. Leader Tasks

After election, the primary task of the leader i is to continue
the expansion of E∗ by evaluating the independence of each
edge (i, j) ∈ Ei , {Ni | ¬beenLeader(j)}, i.e., the set of
unevaluated incident edges. In initializing Ei in such a way,
incident edges (i, j) are considered only when the neighbor
j ∈ Ni has not yet been a leader, as edges incident to a
previous leader j have already been checked. This guarantees
that network edges are considered only once for quadrupling
and pebble covering. Also, note that each leader receives the
current size of the independent edge set |E∗(t)| in initialization,

by embedding |E∗(t)| in the leadership auction. This allows
a leader to terminate the algorithm when 2n− 3 independent
edges have been identified.

The leader executes the procedure LEADERRUN depicted in
Algorithm 2, given in the Appendix, to accomplish the task
of evaluating its incident edges. First, recall that in checking
independence a pebble covering for each quadrupled edge
ei ∈ Ei must be determined. As the pebble information is
distributed across the network, the lead agent must therefore
request pebbles through messaging in an attempt to assign
pebbles to ei. After making a pebble request, the lead agent
then pauses execution and waits for pebble responses before
continuing; a method often referred to as blocking.

When there exists no unfulfilled pebble requests, the lead
agent starts or resumes the quadrupling procedure on the current
incident edge ei ∈ Ei, lines 3–11. For each copy of ei, the
leader searches for a pebble to cover ei, first by looking locally
for free pebbles, assigning ei to Pi if found. If no local pebbles
are available, the agent then sends a PEBBLEREQUESTMSG
to the endpoint of the first edge to which a pebble is assigned,
requesting a free pebble. If a pebble is received from this
request, the quadrupling process continues, otherwise another
request is sent to the endpoint of the second edge to which a
pebble is assigned. In sending requests only along (i, j) ∈ Pi,
we properly evaluate independence with respect to E∗, as
each (i, j) ∈ E∗ must have an assigned pebble from previous
evaluations of independence.

As established by Lemma 2.2, the outcome of the qua-
drupling process, i.e., the existence of 4 free pebbles in the
network, dictates the independence of edge ei. If the leader fails
to receive 4 pebbles to cover ei, the edge is deemed redundant
and evaluation moves to the next member of Ei. On the other
hand, for any edge ei with a pebble covering, obtained through
a combination of local assignment and pebble responses, the
following actions are taken, lines 13–24. First, we return 3
pebbles to the endpoints of ei leaving a single pebble on ei
to establish independence, and then add ei to E∗i . If in adding
ei, 2n− 3 independent edges have been identified, the leader
sends a simple message to the network indicating that the graph
is rigid, and the algorithm terminates. Otherwise, the leader
moves to the next member of Ei and begins a new quadrupling
process. When all members of Ei have been evaluated, the
leader initiates the auction (4) to elect the next leader. The
process of edge quadrupling, pebble requests, edge covering,
and expansion of the independent set then continues from
leader to leader until either the network is found to be rigid,
or every agent has been a leader, indicating non-rigidity.

C. Inter-Agent Messaging

As each leader attempts to expand E∗i through quadru-
pling each of its members, free pebbles are needed to es-
tablish a pebble covering. We facilitate the pebble search
by defining asynchronous message PEBBLEREQUESTMSG,
accompanied by response messages PEBBLEFOUNDMSG and
PEBBLENOTFOUNDMSG, indicating the existence of free
pebbles. The arrival of these messages then triggers message
handlers that form the foundation of the pebble search mecha-



IEEE TRANSACTIONS ON ROBOTICS 7

v1

v2

v3

v4

(a) First edge of quadrupling.

v2

v1

v4

v3

(b) Second edge of quadrupling.

Fig. 4. Illustration of the first two pebble covering attempts for a quadrupling
on edge (3, 4). Agents v1 and v2 have previously been a leader, while agent v3
(blue) is the current leader. Pebbles are depicted by solid black dots, requests
by inter-agent arrows, and responses and shifts by dashed arrows.

nism. For technical details of the protocol, see the pseudocode
given in the Appendix.

The reception of a PEBBLEREQUESTMSG initiates the han-
dler HANDLEPEBBLEREQUEST depicted in Algorithm 3. Each
pebble request is marked with a unique identifier, originating
from the lead agent, defining the pebble search to which the
request is a member and ensuring proper message flow in the
network, lines 2–5. For unique requests, the receiving agent
first attempts to assign local pebbles to the edge connecting
the pebble requester, i.e., a pebble shift operation, lines 7–9. If
a free pebble is available for the shift, a PEBBLEFOUNDMSG
is sent in response, allowing the requester to free an assigned
pebble for either local assignment or to itself respond to a
pebble request. If instead the request recipient has no free
pebbles, the agent forwards the request to the endpoints of its
assigned pebbles, recording the original pebble requester such
that responses can be properly returned, lines 11–12. Notice
that this messaging logic not only facilitates the pebble shift
and assignment rules of the original pebble game, but also
eliminates the need for explicit message routing. Instead, it is
previous pebble assignments that dictate message routing.

When the PEBBLEFOUNDMSG response to a pebble request
is received it triggers the handler HANDLEPEBBLEFOUND
depicted in Algorithm 4. Similar to the shifting action of
HANDLEPEBBLEREQUEST, the agent first frees the local
pebble assigned to the edge connecting the responder, line
2, and then uses the newly freed pebble depending on leader
status. If the agent is currently the leader, line 4, the freed
pebble is assigned locally to ei, continuing the edge quadrupling
process and relieving the request blocking condition. For non-
lead agents, a pebble shift is performed to again free a pebble
for a requesting agent, indicating the shift by returning a
PEBBLEFOUNDMSG to the requester, lines 6–7.

Finally, the PEBBLENOTFOUNDMSG response to a pebble
request initiates the handler HANDLEPEBBLENOTFOUND de-
picted in Algorithm 5. For both leaders and non-leaders, the
lack of a free pebble initiates a further search in the network,
along untraversed incident edges to which a pebble is assigned,
line 3. However, if both available search paths have been
exhausted, the leadership status of the receiver dictates the
action taken. In the case of a non-leader, line 11, the response

is simply returned to the original requester in order to initiate
further search rooted from the requester. For a leader, lines
6–9, the lack of free pebbles in the network indicates precisely
that the conditions of Lemma 2.1 do not hold, implying the
currently considered edge ei is redundant. The edge ei is
removed from consideration by returning all pebbles assigned
during the covering attempt to the endpoints of ei, and the
process is moved to the next incident edge. A basic illustration
of a snapshot of the S algorithm is given in Fig. 4.

D. Complexity Analysis

The complexity of S is promising for realistic decentralized
operation:

Proposition 3.2 (S complexity): By construction, executions
of the S algorithm have worst-case O(n2) messaging complex-
ity and O(n) storage scaling.

Proof: As the pebble game exhibits O(n2) complexity [28],
our pebble messaging scales like O(n2). In applying leader
auction (4) we incur O(n2) as we expend O(n) auction mes-
saging for O(n) leaders. Equivalently, the centralized execution
takes O(n2) and we simply apply an O(n2) decentralization to
provide the algorithm with the appropriate runtime information.
Thus, our overall algorithm will run with O(n2) complexity.
Finally, the per-agent storage complexity scales like O(n), the
maximal cardinality of Ni, as assignments to Ei occur over
only edges incident to i, line 23 Algorithm 2.

The above result demonstrates that our proposed S algorithm
represents a fully decentralized and efficient solution to the
planar generic rigidity evaluation problem, providing the
opportunity to exploit the vast advantages of network rigidity
in realistic robotic networks. Technical analysis and detailed
pseudocode for the S algorithm can be found in the Appendix.

IV. EXPLOITING STRUCTURE TOWARDS PARALLELIZATION

To fully exploit a distributed multi-agent system, we seek a
parallelization of the algorithm proposed in Section III, with
the goal of reducing the overall execution time of rigidity
evaluation, and rendering real-world application feasible. It
turns out that evaluating network rigidity is intrinsically serial
and centralized in nature, making it difficult to asymptotically
reduce the computational complexity through parallelization.
Instead, we aim to provide a parallelization that is advantageous
under realistic circumstances, yielding both non-trivial runtime
improvements and uses for building rigid networks, with no
additional hardware or communication requirements. At a high
level, our scheme consists of identifying local edge addition
operations that preserve independence, and allowing the agents
to apply these rules simultaneously to build a set of independent
edges. We will develop these ideas in the sequel and direct the
reader to Remark 4.2 for a complete summary of the advantages
of parallelization.

A. Independence Preserving Operations

Let us begin by formally defining addition and subtraction
operations for graph edges as follows.

Definition 4.1 (Edge addition/subtraction [10]): Consider
a graph G = (V, E) and let the graph augmented with an
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(a) The endpoint expansion rule (Definition 4.3).

(b) The two incident edge rule (Definition 4.4).

Fig. 5. Illustration of a sequence of the endpoint expansion rule (a) and the
two incident edge rule (b). Edge addition operations to E∗(k) are given by
red links, endpoint membership in G∗(k + 1) is depicted by blue nodes, and
E∗(k) is shown by black links. Notice in the illustrated minimally rigid graph,
a combination of EER and TIER operations identifies fully the independent
edge set E∗.

edge e be denoted G+ = (V, E ∪ {e}). Similarly, the graph G
with e removed is denoted by G− = (V, E \ {e}). We refer
to the operation [·]+e such that G+ = [G]+e as edge addition.
Likewise, the operation [·]−e such that G− = [G]−e as edge
subtraction (or deletion).

Now we are prepared to consider independence preserving
graph operations. Specifically:

Definition 4.2 (Independence preserving operations): We
call the edge operations [·]+e and [·]−e over graph G = (V, E)
having independent edges E satisfying Definition 2.2
independence preserving (IP) if E ∪ {e} and E \ {e} are
themselves independent, respectively. Clearly, all operations
[·]−e over independent edges E are independence preserving.
Also, we have that addition operations [·]+e that are not
independence preserving imply e is redundant with respect to
E .

Thus, we seek IP edge addition operations that enable the
construction of E∗ in a parallel fashion. Then, given an initial
independent set E∗(0) = ∅ with associated graph G∗ = (V, E∗),
we can generate the sequence

G∗(0) = (V, ∅) G(k) = [G(k − 1)]+e , k = 1, . . . ,m (6)

where if each [·]+e is independence preserving, the resulting
graph G∗(m) possesses independent edges. Then, if each
operation [·]+e is local to the endpoints of edge e, sequence (6)
can be achieved in parallel.

To identify such operations, we take inspiration from the
Henneberg construction, a sequence of node and edge additions
that iteratively builds a minimally rigid graph [27]. First,
consider a simple rule based on the membership of vi or
vj as endpoints in G∗(k):

Definition 4.3 (Endpoint expansion rule): Consider
the graph G = (V, E) and the associated node set

V̂ = {vi ∈ V | ∃ j ∈ I, (i, j) ∈ E}, containing the
nodes in V which are endpoints of edges in E . Define the
endpoint expansion rule (EER) as the edge addition operation
[G]+e possessing the property that |[V̂]+e | > |V̂|, where [V̂]+e
are the endpoints of G+. Notice that for an EER operation it
trivially holds that 2 ≥ |[V̂]+e | − |V̂| ≥ 1.

Clearly the endpoint expansion rule 4.3 is limiting in terms
of the identified set E∗, specifically as the identified set can
be described as the union of spanning trees over G, a direct
consequence of expanding endpoints in a graph, as in Fig. 5a.
Thus, we can further consider a two edge rule that is also
independence preserving:

Definition 4.4 (Two incident edge rule): Consider the
graph G = (V, E) and the augmented graph G+ through
addition of edge e , (i, j). The two incident edge rule
(TIER) is an edge addition operation [G]+e where it holds that
(N+

i ≤ 2) ∨ (N+
j ≤ 2) over G+, with (Ni ≥ 1) ∧ (Nj ≥ 1)

over G, otherwise the edge operation would constitute an
endpoint expansion.

We illustrate the rules of Definitions 4.3 and 4.4 in Figs. 5a
and 5b, respectively, with the independence preservation of the
proposed rules given by Proposition A.4 in the Appendix. The
EER and TIER operations indicate first that an independent
set could be built incrementally as in (6), much like the
original pebble game. However, instead of requiring inherently
global pebble searches, the EER and TIER operations are
distinctly local in nature, making them amenable to parallel
implementation.

B. Gossip-like Messaging for Parallelization
We now take inspiration from the randomized communication

scheme typical of gossip algorithms, e.g., [41], [42], to define
the execution and messaging structure for partial parallelization
of rigidity evaluation. Each agent i exchanges inter-neighbor
messages in an attempt to assign incident edges (i, j), ∀ j ∈ Ni

to E∗i according to the EER and TIER rules. Such a construction,
denoted as algorithm P, allows the network to determine a
subset of independent edges E∗P ⊆ E∗ with significantly reduced
execution time and messaging, as will be verified in Section
V-B. The technical pseudocode for our parallelization is given
in the Appendix.

To characterize the EER and TIER operations on the edges
assigned to an agent’s independent set, we associate with each
agent i the variable committed(i) ∈ Z≥0. This commitment
variable stores the cardinality of i as an endpoint of edges
in the distributed independent edge set, or more formally, the
node degree of vi in the graph G∗ = (V, ∪i E∗i ). As the EER
and TIER rules are effectively conditions on node degrees, as
one would expect given the nature of the Laman conditions,
the commitment variables guarantee that all edges added to
the independent set are in fact independent.

As opposed to the leader-based execution of algorithm S,
here every agent executes concurrently according to Algorithm
6, with initialization

Ei(0)← Ni, ei 8 (i, j) ∈ Ei(0) ∀ i ∈ I (7)

where we use notation 8 to represent a random assignment
of a link (i, j) ∈ Ei. Each agent attempts to expand its local



IEEE TRANSACTIONS ON ROBOTICS 9

PG S
E∗
1

E∗
n

... E∗

PebbleAssign

|E∗
P |

{Pi, pi}

GossipAverage

Fig. 6. Block diagram of the parallelized pebble game algorithm for decentralized planar rigidity evaluation. The parallel phase algorithm P acts as input for
the serial phase S, through localized pebble assignment and a gossip-based averaging.

independence set E∗i by exploiting messaging to determine
a neighbor j’s feasibility as an endpoint in G∗(k), ensuring
that the EER and TIER conditions are fulfilled. Thus, for
each edge ei , (i, j) chosen randomly from Ei, agent i
requests neighbor j’s commitment to G∗ through message
EDGEREQUESTMSG(i, j), shown in Algorithm 6, lines 3–4,
and blocks further edge consideration, similar to the leader
logic described in Section III-B. When all edges in Ei have
been considered, line 8, the agent enters into the idle state until
the network stopping condition is met. Algorithm termination
then occurs when all agents have entered into the idle state.
The remaining logic for independent edge selection and
rule checking resides in the message handlers related to
EDGEREQUESTMSG(i, j) of Algorithm 7, as will be discussed
in the following.

C. Inter-Agent Messaging

The reception of an edge request message by agent i
from neighbor j ∈ Ni triggers the message handling logic
HANDLEEDGEREQUEST(i, j) depicted in Algorithm 7. Recall
that when an agent i receives such a request from j it indicates
an attempt by j to make the assignment of edge (j, i) to its
independent set E∗j . Requests for an edge assignment must
therefore be tested for fulfillment of the EER and TIER rules.
However, as all agents are trying to add incident edges to the
independent edge set simultaneously, it may be the case that
two agents sharing an edge conflict on which agent takes the
edge, specifically as both cannot. Thus, receiving agent i first
determines whether a request represents a conflict over edge
(i, j). If there is a conflict, agents i and j resolve the conflict
as follows:

Remark 4.1 (Conflict resolution): We define an edge con-
flict in the execution of algorithm P as the state in which an
agent i ∈ I has received an EDGEREQUESMSG(i, j) from
j ∈ Ni, where for i it holds that requestedFrom(i) = j.
Intuitively, this state indicates that both i and j are attempting
to add edge (i, j) to E∗, a condition that would introduce
inconsistencies in |E∗|. In such scenarios we assume there
exists a function RESOLVECONFLICT(i, j) : E → I indicating
the conflict winner, such that

RESOLVECONFLICT(i, j) = RESOLVECONFLICT(j, i) (8)

for all i 6= j ∈ I. Now, resolving a conflict is simply a
matter of first deciding which agent wins and receives the

edge, and then ensuring that the losing agent does not take
the edge. The winner of a conflict is decided according to the
predetermined policy, RESOLVECONFLICT, which is chosen
as a design parameter, and the loser is denied the edge by
rejecting its edge request, lines 2–8. This is accomplished by
saturating the commitments of the winning agent, such that
the edge request of the losing agent cannot be fulfilled due to
violation of the EER and TIER rules. In achieving condition
(8), we could consider various options, e.g., balancing |E∗i | and
|E∗j | in choosing the winner, applying a simple predetermined
condition such as agent label, or perhaps a more complex
method such as considering optimal assignments based on
some cost or utility function over (i, j).

After properly handling potential conflicts over
(i, j), receiver i then simply responds to j via
EDGERESPONSEMSG(i, j, response) indicating its current
commitment to E∗, increases its own commitment count to
guarantee independence preservation, and removes (i, j) from
Ei to avoid double checking, lines 8–13.

In coherence with the edge request logic, in receiving an
EDGERESPONSEMSG(i, j, response), an agent i acts according
to Algorithm 8. Again, as an edge response conveys agent j’s
commitment to E∗, it is validated against the EER and TIER
rules, with success resulting in the assignment of (i, j) to Ei
and an incrementing of committed(i) as i is now an endpoint
of G∗, lines 3–4. After independence preserving assignment,
agent i simply moves to consider its next incident edge by
choosing a random (i, j) ∈ Ei, lines 7–8.

At the conclusion of algorithm P, a distributed independent
edge set E∗P has been computed across each E∗i . However, by the
EER and TIER definitions, it must hold generally that E∗P ⊆ E∗.
Thus, to fully determine E∗ we generate a composite algorithm
by passing the terminal state of P to the serialized algorithm S
in order to apply global network information in completing E∗.
The initial conditions for the serialized algorithm are generated
from the output of the parallel algorithm in a way that it is
feasible that the serial algorithm itself had run up to that point.
Thus, the output of the parallel algorithm must be shaped to
mimic the conditions of the serialized algorithm. To do so
we simply apply a network summing algorithm to determine
the overall size of the independent edge set (i.e., the sum
of the local set sizes), and then assign pebbles to cover the
independent edges as required for the pebble game. Specifically,
we first apply gossip averaging [41], to yield |E∗P |. Then, local
pebble assignments can easily be determined locally, as verified
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by Proposition A.8. This composite construction, which we
will denote P+S, is illustrated in Fig. 6. An example execution
of the parallel algorithm is depicted in Fig. 7.

D. Complexity Analysis

Towards the real-world applicability of our propositions, we
have complexity that scales well with network size:

Proposition 4.1 (P + S complexity): By construction, exe-
cutions of the P + S algorithm have worst-case O(n2) mes-
saging complexity, and O(n) storage scaling.

Proof: For the P portion of the P + S algorithm, we
have that each of n agents communicates with at most n− 1
neighbors, yielding O(n2) messaging. The gossip averaging
for determining |E∗P | exhibits O(n log n) messaging [41], while
a local pebble assignment trivially requires O(n2) operations.
Thus we have an overall worst-case message complexity of
O(n2) for a P+S as S also has O(n2) messaging by Proposition
3.2. The overall storage complexity follows directly from the
fact that assignments to E∗ can be made only locally by each
agent i ∈ I, and thus scales like O(n).

Finally, to close we can also roughly evaluate the expected
improvement provided by the partial parallelization due to P:

Proposition 4.2 (Parallel identification): An execution of P,
applied to a graph G = (V, E) (where we assume every vi ∈ V
is an endpoint in E), with n ≥ 3 must result in the terminal
condition

|E∗P (t̄P)| ,
∣∣∣∣∣
⋃

i

E∗P,i(t̄P)

∣∣∣∣∣ ≥
⌈
n− 1

2

⌉
+ 1 (9)

where d·e is the standard ceiling operator, yielding a lower
bound on the independent edges identified by the P algorithm.

Proof: First, notice that we disregard the case of n = 1
(as |E| = 0), and for n = 2 we can always identify the
single member of E∗ due to symmetric conflict resolution.
Now, observing that the single n = 2 graph is a worst-case
in terms of detectable independent edges , with |E∗| = dn/2e,
for n ≥ 3 we can construct a similar worst-case graph by
appending a single node and edge to the n − 1 worst-case,
as the appended edge will always be detectable by an EER
operation. As we add a single detectable edge to the previous
worst-case, a simple inductive argument yields the result.

The above result states directly that we can always detect
a spanning tree over G using our proposed parallel and
distributed interactions. Further, the number of edges that the
parallelization identifies directly affects the number of edges
left to be found, and thus the complexity of the serial execution.
A summary of the advantages of our parallelization are given
in the following remark, while technical analysis and detailed
pseudocode can be found in the Appendix.

Remark 4.2 (Parallelization Benefits): First, as the parallel
algorithm identifies at least a spanning tree in its execution
by Proposition 4.2, it can quickly help to determine when
the network is non-rigid without having to run the serialized
step, yielding significant speed advantages in those scenarios.
Additionally, as the parallel algorithm takes advantage of
independence preserving operations, one could leverage it
to build a rigid network autonomously and efficiently, e.g.,

v2
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v3

(a) Initial requests.

v2
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v3

(b) Initial responses.

v2

v1

v4

v3

(c) Final requests.

v2

v1

v4

v3

(d) Final responses.

Fig. 7. Parallel messaging for a minimally rigid graph with n = 4. Inter-agent
requests are denoted by solid arrows, responses by dashed arrows, and pebble
assignments by solid dots. Notice that conflicts occur in (a) over (v1, v2) and
in (c) over (v2, v4), with resolution dictated by agent label i < j for j ∈ Ni.

in constructing a localizable sensor network topology. From
a practical perspective, the parallelization is simply a more
intelligent use of available network resources, i.e., it can
be implemented without any additional communication or
hardware requirements, so even a factor of two speedup
may be convenient in practice. Also, such speedups relate
well to realistic scenarios such as the time scales of external
network influences and the speed of rigidity evaluation (see
Section V-C). Even constant factor speedups can expand the
applicability of our algorithms under faster switching topologies
or environmental conditions.

V. SIMULATION RESULTS

A. A Rigidity Control Scenario

We wish to demonstrate here a scenario where network
rigidity can be controlled in a dynamic multi-robot system. To
begin, consider that in controlling generic rigidity we need
only to disallow the loss of independent edges (i, j) ∈ E∗.
For this purpose, we can employ the constrained interaction
framework proposed by Williams and Sukhatme in [4], a
very brief overview of which will be given here. Assuming
proximity-limited sensing and communication, together with
agent dynamics ẋi = ui, the constrained interaction framework
regulates link addition and deletion spatially, through a
switching combination of hysteresis, attraction, and repulsion,
in order to satisfy a desired set of constraints. In particular,
each agent is assigned predicates P a

ij , P
d
ij : V × V ↔ {0, 1}

that indicate constraint violations if link (i, j) were gained or
lost. Thus, in applying our proposed decentralized pebble game
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Fig. 8. Rigidity control simulation for n = 9 mobile agents applying a dispersive objective with a rigidity maintenance constraint: (a) initial rigid configuration;
(b) and (c) intermediate configurations; (d) final converged and rigid configuration. Green edges are not independent and thus can be lost, while red edges are
actively retained due to their independence.
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Fig. 9. Swarm size and edge set cardinality for the rigidity control simulation.

to identify local sets E∗i ∀ i ∈ I, we arrive directly at rigidity
preserving predicates. That is,

P a
ij , 0, P d

ij , (i, j) ∈ (E∗i ∪ E∗j ) (10)

Now, we are prepared to present our rigidity control simula-
tion results. We assume a system of n = 9 mobile agents, each
with proximity-limited communication and sensing, applying
for the sake of link deletion, a dispersive objective controller,
yielding agent controllers with generic form:

ui = uCI −∇xi

(∑

i∈Ni

1

‖xi − xj‖2

)
∀ i ∈ I (11)

where uCI is the control contribution due to the constrained
interaction framework and predicates (10). The agents begin
in the fully connected initial configuration given by the ring
network depicted in Fig. 8a, satisfying the initial condition
G(0) ∈ GR. Through controllers (11) the agents reach inter-
mediate configurations given by Figs. 8b and 8c, ultimately
terminating in the final configuration in Fig. 8d. Fig. 9 depicts
the spatial size of the swarm, i.e., the largest distance between
any two agents, and the size of the independent edge set,
which dictates network rigidity. Thus Fig. 9 demonstrates that
the dispersive objective is achieved through increasing swarm
size, and that the network remains rigid as the size of the
independent set is bounded below by 2n− 3.

B. Contiki Implementation: Real-World Feasibility Results

To determine the performance of our algorithms under
realistic networking conditions, we consider the Contiki op-
erating system, together with the Cooja network simulator3.
We implemented both the serial and parallel decentralized
pebble game for Contiki and tested our codebase against a
range of emulated hardware platforms and communication
stacks for correctness. A Monte Carlo set was simulated by
generating rigid and non-rigid networks for n ∈ {5, 29},
yielding the results depicted in Fig. 10. Specifically, Fig. 10
(top) compares the execution time (seconds) for the serial
and parallel algorithms, while Fig. 10 (bottom) shows the per-
agent messaging burden. It is clear that both of our algorithms
exhibit feasible and efficient performance, with actual scaling
that is approximately O(n) in both execution and messaging.
The parallel version however represents our goal of real-world
capability by outperforming the serial version by a factor 2,
as even in reasonably sized networks, execution times for
evaluation are under 1 second. An initial version of the base
code for our proposed algorithms has also been released for
application in the robotics community4.

C. Realistic Considerations

Realistic applications present difficult and unpredictable
influences, e.g., wind gusts or variability in ocean currents
in autonomous surface vehicles (ASVs). These environmen-
tal variables and their timescales will directly impact the
capability of the network to determine network rigidity in
a timely fashion, as the network topology may change too
often due to uncontrollable influences. Thus, the relationship
between the parameters of an application, the properties of the
employed communication network, and the numerical bounds
on rigidity evaluation run-time must all be well understood by
an implementer. Informally, the switching time of the topology,
which is dictated by communication hardware and application-
specific factors, and the network size become crucial design
variables as they determine the feasibility of computing network
rigidity in time to steer the network away from non-rigidity.
In general, networks which exhibit short switching times will

3See http://www.contiki-os.org.
4See http://github.com/Attilio-Priolo/Rigidity Check Contiki

http://www.contiki-os.org
http://github.com/Attilio-Priolo/Rigidity_Check_Contiki
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Fig. 10. Monte Carlo results from a Contiki networking environment
demonstrating execution time and message complexity for the S and P+ S
algorithms. Solid lines are average values, while dashed lines are maximum
and minimums.

require smaller network size or faster communication to combat
external influences for feasible operation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of evaluating the
rigidity of a planar network under the requirements of decen-
tralization, asynchronicity, and parallelization. We proposed
the decentralization of the pebble game algorithm of Jacobs
et. al., based on asynchronous inter-agent message-passing
and distributed auctions for electing network leaders. Further,
we provided a parallelization of our methods that yielded
significantly reduced execution time and messaging burden.
Finally, we provided a simulated application in decentralized
rigidity control, and Monte Carlo analysis of our algorithms in
a Contiki networking environment, illustrating the real-world
applicability of our methods.

Directions for future work include demonstrating our meth-
ods on robotic hardware in field experiments, extensions to
global rigidity for even stronger guarantees in multi-robot
applications, and the inclusion of network utility metrics to
yield decentralized rigidity evaluation and control with provable
optimality conditions.

APPENDIX

A. The Serialized Algorithm

To complement our discussion of the S algorithm, we analyze
the correctness, finite termination, and cost properties of our
algorithms. First, we formally establish the stopping condition
for the S algorithm:

Definition A.1 (S stopping condition): As previously dis-
cussed, the S algorithm terminates upon satisfaction of the

following condition:

fS
stop ,

{(
n∑

i=1

bi = 0

)
∨
(

n∑

i=1

|E∗i | = 2n− 3

)}
(12)

where the
∑

i bi = 0 indicates that all agents have been a
leader, and

∑
i|E∗i | = 2n− 3 is detected by the lead agent on

line 24 of Algorithm 2.
Next, we verify that our formulation guarantees the entire

network is evaluated for rigidity, with no edge reconsideration,
and further that mutual exclusion of the local independent sets
holds:

Proposition A.1 (Edge consideration, mutual exclusion):
Disregarding algorithm termination when |E∗| = 2n − 3,
every (i, j) ∈ E is eligible to be considered for independence.
Further, E∗i ∩ E∗j = ∅ holds for all i 6= j ∈ I.

Proof: These results are a simple consequence of the
guaranteed convergence of auction (4), bi = 0 for all
beenLeader(i) = 1 guaranteeing no reelection, and the
initialization of Ei with edges not shared with previous leaders.

To ensure timely results, we must also have finite termination
of S:

Proposition A.2 (S termination): Consider the execution of
the S algorithm as described in Sections III-A, III-B, and III-C.
By construction, it follows that the stopping condition fS

stop

of (12) is satisfied after a finite number of clock ticks.
Proof: We can guarantee no message-induced race con-

ditions by Assumptions 2 and 3, and that there exist no
algorithmic race conditions due to the internal blocking on
line 2 of Algorithm 2. From the request checking mechanism
(line 2 Algorithm 3) and the guaranteed delivery of inter-
agent messages by the best-effort Assumption 3, we have
that all pebble request messaging rooted at agent i with
isLeader(i) = 1, is finite, i.e., every pebble request receives
a response. Now, the finiteness of execution is a direct
consequence of the finiteness of each Ei, ∀ i ∈ I and the
finite convergence of auction (4) [40], as there exists no leader
reelection by construction.

Now we come to our primary result concerning the correct-
ness of the S algorithm:

Proposition A.3 (S correctness): Consider an execution of
S, applied to a graph G = (V, E). It follows that by construction
we are guaranteed to identify |E∗| = 2n−3 independent edges
when G ∈ GR, and |E∗| < 2n − 3 otherwise, i.e., S properly
identifies the generic rigidity of G.

Proof: First, notice that by Proposition A.1, we can
ensure that every (i, j) ∈ E is eligible for quadrupling and
pebble covering as dictated by the original pebble game [28],
and further that E∗i ∩ E∗j = ∅ holds for all i 6= j ∈ I
ensures that |E∗| is properly tracked by our distributed storage.
Thus, correctness is shown by arguing that our leadership and
messaging formulation is faithful to the rules of the pebble
game. This result follows by observing that pebble assignments
and shift operations are only made locally (line 8 of Algorithm
2, line 7 of Algorithm 3, and lines 2, 4, and 8 of Algorithm 4),
and that the pebble search mechanism respects the network’s
distributed pebble assignments Pi ∀ i ∈ I (line 12 of Algorithm
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Algorithm 2 Leader execution logic.
1: procedure LEADERRUN(i)
2: while ei , (i, j) do . Continue pebble covering
3: while Quadrupled Copies ≤ 4 do
4: if pi > 0 then . Assign local pebble
5: Pi ← Pi ∪ ei
6: pi ← pi − 1
7: else . Request pebble along first edge
8: PEBBLEREQUESTMSG(i, Pi(1, 2))
9: return

10: end if
11: end while
12: . Quadrupling success, return 3 pebbles:
13: Pi ← ∅
14: pi ← 2
15: Return 1 pebble to vj
16: . Add independent edge and check rigidity:
17: E∗i ← E∗i ∪ ei
18: if |E∗| = 2n− 3 then
19: Send network rigidity notification
20: return
21: end if
22: . Go to next incident edge:
23: Ei ← Ei − ei
24: ei ← (i, j) ∈ Ei
25: end while
26: . All local edges checked:
27: Initiate leadership transfer auction
28: end procedure

Algorithm 3 Pebble request handler for agent i.
1: procedure HANDLEPEBBLEREQUEST(from, i)
2: if Request Not Unique then . Already requested
3: PEBBLENOTFOUNDMSG(i, from)
4: return
5: end if
6: if pi > 0 then . Local pebble available
7: Pi ← Pi ∪ (i, from) . Shift free pebble
8: pi ← pi − 1
9: PEBBLEFOUNDMSG(i, from)

10: else . Request along first assigned edge
11: PEBBLEREQUESTMSG(i, Pi(1, 2))
12: requester(i)← from
13: end if
14: end procedure

2, line 11 of Algorithm 3, and line 3 of Algorithm 5). Finally,
as there is only one leader active at any time, each quadrupling
operation (lines 6-17, Algorithm 2) is sound with respect to
the current set E∗, and the result follows.

The above result demonstrates that S is sound in terms of
planar rigidity evaluation.

B. The Parallelized Algorithm

We begin with a proof of the independence preservation of
the EER and TIER graph operations:

Algorithm 4 Pebble found handler for agent i.
1: procedure HANDLEPEBBLEFOUND(from, i)
2: Pi ← Pi − (i, from) . Free local pebble
3: if isLeader(i) then
4: Pi ← Pi ∪ ei . Expand covering
5: else . Give free pebble to requester
6: Pi ← Pi ∪ (i, requester(i))
7: PEBBLEFOUNDMSG(i, requester(i))
8: end if
9: end procedure

Algorithm 5 Pebble not found handler for agent i.
1: procedure HANDLEPEBBLENOTFOUND(from, i)
2: if Paths Searched < 2 then . Search other path
3: PEBBLEREQUESTMSG(i, Pi(2, 2))
4: else . Search failed, no free pebbles
5: if isLeader(i) then . ei is redundant
6: Return pebbles assigned to ei
7: . Go to next incident edge:
8: Ei ← Ei − ei
9: ei ← (i, j) ∈ Ei

10: else
11: PEBBLENOTFOUNDMSG(i, requester(i))
12: end if
13: end if
14: end procedure

Proposition A.4 (Independence preservation): Consider the
graph G = (V, E) having edges E forming an independent
set according to Definition 2.2. The edge addition operations
[·]+e over G abiding by the EER and TIER requirements of
Definitions 4.3 and 4.4 are independence preserving in the
sense of Definition 4.2, respectively. Further, considering a
sequence of graphs {G(0), . . . ,G(m)} generated by

G(0) = G G(k) = [G(k − 1)]+e , k = 1, . . . ,m (13)

over EER and TIER operations yields graph Gm having
independent edges Em.

Proof: First, consider the case of an EER operation over G.
By the independence of E , we have by Definition 2.2 that for
every subgraph Ḡ = (V̄, Ē), |Ē | ≤ 2|V̄| − 3. In the augmented
graph edge e introduces expanded subgraphs containing e all
having the property

|Ē |+ 1 ≤ 2|V̄| − 3 + 1 ≤ 2(|V̄|+ 1)− 3 (14)

due to the node expansion property of the EER, all of which
therefore abide by the independence subgraph property. The
remaining subgraphs of G+ are independent by assumption.
Thus, we conclude that the EER operation according to
Definition 4.3 is independence preserving.

Now, consider the application of the TIER operation over G.
By Definition 4.4 there must exist an endpoint of e , (i, j),
indexed by i ∈ I, with exactly Ni = 1 over G. Thus, we can
view the edges (i, j) and (i, k) with k ∈ Ni, and the node i
as members of a two edge Henneberg operation, as in Section
3 of [27], e.g., adding vertex v4 with edges (4,2) and (4,1) in
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Algorithm 6 Parallel execution logic for agent i.
1: procedure PARALLELRUN(i)
2: if ei , (i, j) 6= 0 then . Next incident edge
3: EDGEREQUESTMSG(i, j)
4: requestedFrom(i)← j
5: return
6: end if
7: . All local edges checked:
8: idle(i)← Yes
9: end procedure

Algorithm 7 Parallel edge request handler for agent i.
1: procedure HANDLEEDGEREQUEST(i, j)
2: response ← committed(i)
3: if requestedFrom(i) = j then . Edge contention
4: if RESOLVECONFLICT(i, j) = i then
5: response ← 2 . Ensure i wins edge
6: end if
7: end if
8: EDGERESPONSEMSG(i, j, response)
9: if response < 2 then . Max of 2 incident edges

10: committed(i)← committed(i) + 1
11: end if
12: . Do not double check (i, j):
13: Ei ← Ei − (i, j)
14: end procedure

Fig. 5b. As the edge subtraction operation [·]−e is independence
preserving, the graph G+ described by applying the previous
two edge Henneberg operation to [G]−(i,k) has independent edges
by Proposition 3.1 of [27]. Briefly, this result follows from the
independence of E and the relationships, |E| = |E+| − 2 and
|V| = |V+|−1. Thus, the TIER operation is also independence
preserving.

Finally, the independence preservation of a sequence of
EER and TIER operations is a trivial consequence of the
initial independence of E and the IP properties of each edge
augmentation.

To complement our discussion of the P + S algorithm, we
analyze the correctness, finite termination, and cost properties
of our algorithms. First, we verify that E∗P ,

⋃
i E∗P,i has a

valid distributed construction:
Proposition A.5 (Parallel mutual exclusion): Consider the

application of the parallel P algorithm to a graph G = (V, E).
It follows that upon termination we have mutual exclusion
E∗i ∩ E∗j = ∅, ∀ i 6= j ∈ I.

Proof: Given the assumptions of asynchronicity in messag-
ing and the FIFO queuing of received messages (Assumption
3) and execution devoid of race conditions (Assumption 2),
the following scenarios must be considered, viewed from the
instant when agent i handles an EDGERESPONSEMSG from j,
implying that ei = (i, j) and (i, j) /∈ E∗i (line 2, Algorithm 8):
• (i, j) /∈ E∗j : We must consider two cases here, ei-

ther ej = (i, j) or ej 6= (i, j). First, in the trivial
case of ej 6= (i, j), it follows from reception of an
EDGERESPONSEMSG from j, the atomic nature of ex-

Algorithm 8 Parallel edge response handler for agent i.
1: procedure HANDLEEDGERESPONSE(i, j, response)
2: if response < 2 then . Independence guaranteed
3: E∗i ← E∗i ∪ (i, j)
4: committed(i)← committed(i) + 1
5: end if
6: . Go to next incident edge:
7: Ei ← Ei − (i, j)
8: ei 8 (i, j) ∈ Ei
9: end procedure

ecution, and line 13 of Algorithm 7, that regardless
of assignment to E∗i , (i, j) /∈ E∗j for all execution
t > 0. When ej = (i, j), the conflict resolution of
line 3-7 in Algorithm 7, together with line 2 of Algo-
rithm 8 ensures that simultaneous requests made over
(i, j) agree on assignment, specifically as by assumption
RESOLVECONFLICT(i, j) = RESOLVECONFLICT(j, i).

• (i, j) ∈ E∗j : Here it is implied that at some previous time
agent i received and responded to a EDGEREQUESTMSG
from j. As agent i being in a state of response reception
over (i, j) is contradictory given line 13 of Algorithm 7, it
must be the case that requests over (i, j) have been made
in concert. However, as previously stated, the conflict
resolution ensures E∗i ∩ E∗j = ∅ in such scenarios.

Notice that due to the uniformity of execution and messaging
logic across i ∈ I, the previous scenarios hold equivalently
from the perspective of agent j, and thus for all pairs
{i 6= j | (i, j) ∈ E}, and the result follows.

Of course, E∗P must also fulfill the independence requirements
of Definition 2.2, as is shown below.

Proposition A.6 (Parallel Correctness): Consider the algo-
rithm P applied to a graph G = (V, E). For all execution t > 0
it follows that edge addition operations, E∗i (t+) = E∗i (t)∪(i, j)
(line 3 Algorithm 8), are independence preserving and

⋃
i E∗i

is independent with |⋃i E∗i | ≤ 2n− 3.
Proof: Resting again on Assumptions 2 and 3, and the

uniform conflict resolution of RESOLVECONFLICT(i, j), this
result is a consequence of the commitment counting rules
(lines 10 and 5 of Algorithms 7 and 8), and the condition
on line 2 of Algorithm 8 that enforces the cardinality of
endpoint j in

⋃
i E∗i (t+). In particular, when j /∈ ⋃i E∗i (t)

(committed(j) = 0), E∗i (t+) = E∗i (t)∪(i, j) constitutes an EER
operation (c.f. Definition 4.3), otherwise when j ∈ ⋃i E∗i (t)
(committed(j) = 1), E∗i (t+) = E∗i (t)∪(i, j) constitutes a TIER
operation (c.f. Definition 4.4). As sequences of EER and TIER
operations preserve independence by Proposition A.4,

⋃
i E∗i

is independent, with |⋃i E∗i | ≤ 2n− 3 following directly from
the Laman conditions Theorem 2.1.

To ensure timely results, we must also have finite termination
of P + S:

Proposition A.7 (P termination): Consider the execution of
the P algorithm as described in Section IV-B. By construction,
it follows that the stopping condition, i.e., all agents are idle,
is satisfied after a finite number of clock ticks.

Proof: We can again guarantee no message-induced race
conditions by Assumptions 2 and 3. Thus, the finiteness of
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execution is a direct consequence of the finiteness of each
Ei, ∀ i ∈ I , the internal blocking on line 2 of Algorithm 6, the
guaranteed delivery of inter-agent messages by the best-effort
Assumption 3, and finally the symmetric conflict resolution of
Remark 4.1, disallowing conflict based race conditions.

To constitute a valid initial condition for S, the pebble
assignments applied to the terminal state E∗P of P must be
sound:

Proposition A.8 (Pebble Assignments): Consider an execu-
tion of P, applied to a graph G = (V, E). There must exist a
local pebble covering for every (i, j) ∈ E∗i ∀ i ∈ I, that is a
local assignment of a pebble by either i or j to (i, j).

Proof: In guaranteeing that such an assignment exists, we
rely on the properties of the EER and TIER operations. As
each operation E∗i (t+) = E∗i (t) ∪ (i, j) respects Proposition
A.4 by Proposition A.6, we have that for any (i, j) ∈ ⋃i E∗i
there must exist an endpoint i or j with at most two incident
edges. From this endpoint we can thus always select a pebble
to cover (i, j) as each agent i ∈ I is initially assigned two
pebbles.

Now we come to our primary result concerning the correct-
ness and finite termination of the P + S algorithm:

Proposition A.9 (P + S correctness and termination):
Consider an execution of P+S, applied to a graph G = (V, E).
It follows that the terminal system state:

P(t̄P) ,

{⋃

i

E∗i (t̄P),Pi, pi

}
∀ i ∈ I (15)

is a valid initial condition for the S algorithm, the execution
of P + S terminates after a finite number of clock ticks, and
properly identifies the generic topology rigidity of G.

Proof: First, we have directly from Propositions A.2 and
A.7, the known finite convergence of gossip averaging [41], and
the trivial finiteness of a local pebble assignment process, that
the composite execution of P+S terminates in finite time. Now,
from Propositions A.5 and A.6 it follows that the state P(t̄P)
represents a properly distributed and independent edge set, and
from Proposition A.8 that there must exist pebble assignments
Pi that are local shift operations relative to Definition 2.3, and
thus constitute a valid pebble covering. Thus the application
of S with input P(t̄P) is correct by Proposition A.3, and the
result follows.
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